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ABSTRACT 

This collection of studies focused on characterization of maize and teosinte starches, 

creation of a model system for studying starch crystallinity, and examination of cyanobacterial 

glycogen accumulation in various media conditions. 

Chalco teosinte, BSSS maize, BSSS maize-Chalco teosinte cross, and commercial normal 

maize starches all exhibited A-type X-ray diffraction patterns, similar degrees of crystallinity, 

amylopectin molecular \Veights, and amylase contents. Chalco teosinte starch granules were 

small, broken, or hollow; other starch granules were spherical or polygonal. Average branch 

chain length was smallest for Chalco teosinte starch (degree of polymerization (dp) 23.5) and 

largest for commercial normal maize starch (dp 25.3). Differential scanning calorimetry analysis 

showed that Chalco teosinte starch had the lowest onset gelatinization temperature (61 °C) and 

enthalpy change of gelatinization (11.4 J / g), but the highest rate of retrogradation (56.2% in 7 

days). Pasting properties determined using a Rapid Visco Analyzer differed widely. Chalco 

teosinte starch had the lowest peak viscosity (135.8 RVU), and BSSS maize-Chalco teosinte cross 

starch had the highest (187.3 RVU). 

Starch is cold-water insoluble and semi-crystalline, but glycogen is considered cold-water 

soluble and non-crystalline. Starch crystallinity was studied with a starch model system prepared 

from amorphous wa~-y-maize starch and highly crystalline normal-maize starch Naegeli dextrin 

(83'% crystalline). These components, and mixtures thereof, were analyzed by X-ray diffraction 

and differential scanning calorimetry (DSC). Degree of crystallinity, determined by X-ray 

diffraction, increased linearly with increasing amounts of Naegeli dextrin. However, enthalpy 
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change of melting and melting temperature, determined by DSC, demonstrated a second order 

relationship. 

Glycogen production by cyanobacteria (Syzed,otJ'Stfr PCC 6803) '.Vas studied using media 

conditions that varied in glucose and nitrogen contents, and glycogen was extracted 'vvith ethanol 

only or ethanol and trichloroacetic acid. Glycogen accumulation was the highest in glucose-

abundant nitrogen-deficient media (30 mg/L), but growth rate was the highest in glucose and 

nitrogen-abundant media. Average branch chain length ranged from dp 9.5 (glucose and 

nitrogen-abundant media) to dp 11.2 (glucose-abundant nitrogen-deficient media). Thus, media 

nutrient content influenced cyanobacterial growth rate, amount accumulated, and molecular 

structure of glycogen. Minor differences were observed between glycogen samples extracted 

with ethanol only and with ethanol and trichloroacetic acid. 
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GENERAL INTRODUCTION 

Starch has a unique role in nature because it is the major link bet\veen sunlight and 

human food. Plants use solar energy to produce glucose through the process of photosynthesis, 

store glucose in the form of semi-crystalline starch granules, and humans consume starch-

containing plants. Starch is generally made of t\vo different types of glucose polymers: amylase 

and amylopectin. However, starches may contain only amylopectin (waxy starch) or amylase, 

amylopectin, and an intermediate component (high-amylase maize starch). Amylase is primarily 

a linear molecule made of glucose monomers linked a-1-4 with a few branches linked a-1-6. 

Amylopectin also is made of glucose chains linked a-1-4 with a-1-6 branch linkages, but it is 

much more highly branched and has shorter chains than amylase. Starch intermediate 

component displays characteristics between those of amylase and amylopectin. The semi-

crystalline structure of starch distinguishes it from glycogen, a glucose storage molecule in 

mammals, bacteria, fish and other living organisms. Glycogen is water-soluble and is even more 

highly branched than amylopectin. 

People all over the world have carefully cultivated starch-producing plants that grow well 

in the region where they live, and the crop of choice in North and South America is maize or 

com. Maize was grown only in the Americas before 1492 when Columbus and his men 

discovered it in Cuba. Since the discovery of maize, many geneticists, agronomists, and 

botanists have attempted to determine the origin of maize. Teosinte, the closest relative of 

maize, has constantly been in the discussion. There are several hypotheses about the 

relationship between maize and teosinte. Dr. George Beadle upheld the hypothesis that teosinte 
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gradually evoked into maize, and this is currently the most widely accepted theory of the origin 

of maize. 

All teosinte research \Vas originally done in Mexico because light sensitivity limited the 

growth of teosinte to regions with less than 12 hours of daylight. However, Dr. Beadle 

uvercame this obstacle by breeding a daylight-adopted Chalco teosinte variety that grmvs in the 

Mid,vest United States. Dr. Beadle presented the results of his work at the 1977 annual 

American Seed Trade Association meeting ,vhere he also gave mvay samples of his com belt-

adopted teosinte. Dr. HO\vard Smith received a sample at this meeting, returned to the Iowa 

State University Agronomy Department, and made a cross between the Chalco teosinte and 

BSSS maize (a variable breeding line). The cross was randomly mated for several years by Dr. 

Smith and later by Dr. Pollak. 

Much research has been done to establish the genetic similarities and differences 

between maize and teosinte, but there are no reported studies examining the physicochemical 

properties of teosinte starch. Therefore, Chalco teosinte starch was characterized and compared 

with maize starches, including commercial normal maize, BSSS maize, and the maize-teosinte 

cross provided by Dr. Linda Pollak (described above). Chalco teosinte was chosen because it is 

the most maize-like variety of teosinte. The goals of this study were to characterize Chalco 

teosinte starch and compare it with normal-maize starch and to determine if crossing maize and 

teosinte resulted in maize starch with unique or desirable properties. 

Starch granules display semi-crystalline properties, meaning that they contain both 

crystalline and amorphous regions. X-ray diffraction is commonly used to characterize the type 

of crystal pattern in starch granules (A, B, or C-type) and to quantify the amount of crystalline 

material in starch granules. Starch thermal properties (gelatinization, or melting temperature and 
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enthalpy change of gelatinization) are often determined by differential scanning calorimietry 

(DSC). Starch studies rarely include a comparison benveen the degree of crystallinity determined 

by X-ray diffraction and DSC data. However, synthetic polymer studies often use enthalpy 

change of melting (determined by DSC) as a measure of crystallinity. The goal of this study ,vas 

to create a starch model system using amorphous waxy maize starch and normal maize starch 

Naegeli dextrin (acid hydrolyzed starch, consisting of 83°/o crystallite) to study the correlation 

between degree of crystallinity, enthalpy change of melting, and melting temperature. 

Glycogen is a glucose polymer used for energy storage in many living organisms, 

including cyanobacteria, or blue-green algae. The amount and structure of glycogen stored in a 

bacterium depend on the media growth conditions and glycogen extraction procedures can 

influence the amount and structure of purified glycogen. For example, media rich in glucose but 

deficient in nitrogen, sulfate, or phosphate have been shown to increase bacterial glycogen 

accumulation. This study was performed to determine how the molecular structure and amount 

of glycogen in cyanobacteria (Synechorystis PCC 6803) were affected by glucose and nitrogen 

contents in the growth media, and to determine what effect trichloroacetic acid (used for protein 

precipitation during extraction) had on glycogen structure. 

Thesis Organization 

This thesis contains a general introduction and literature review followed by three 

chapters describing three separate experimental studies. The first chapter, "Characterization of 

Chalco Teosinte and Maize Starches" will be submitted to Cereal Chemistry Journal for 

publication. The second chapter, "Crystallinity and Melting Properties of a Starch Model 
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System" describes \vork that was initially done to establish a standard operating procedure for 

starch crystallinity calculation, but later became an experimental investigation on its own. 

Further refinement of these experiments \vould be required for publication. The third chapter, 

"Effects of Growth Conditions on Amount and Structure of Glycogen Produced by 

Cyanobacteria, Synechorystis PCC 6803" describes work done in collaboration with Sang-ho Yoo. 

This study was done to optimize growth conditions for bacteria used in Dr. Yoo's dissertation 

research, and therefore it is not considered publishable as-is. General conclusions complete this 

thesis. 
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LITERATURE REVIEW 

Starch 

General Properties 

Glucose, a product of photosynthesis, is stored as starch polymers in granules in plant 

stems, roots, leaves, tubers, seeds, and fruits (Robyt 1998). The starch granule is an intricately 

organized yet widely variable energy storage system. Anhydroglucose monomers are arranged in 

chains linked by a-1-4 bonds with branches attached by a-1-6 bonds. Variation in the length of 

the linear chains and frequency of branching results in the two main types of molecules in starch 

granules: amylase and amylopectin. Amylase has long linear chains and few branches while 

amylopectin has relatively short linear chains and many branches, and a much larger molecular 

weight. A third component, intermediate between amylase and amylopectin, has been found in 

some starches (Lansky 1949, Peat et al 1952, Kasemsuwan et al 1995). Some starch granules also 

contain small amounts of lipid and phosphorous. Starch is the major carbohydrate source in the 

human diet and is usually consumed in the form of cereal products such as rice, potatoes or 

wheat bread. However, starch displays great versatility as a food ingredient and can be found in 

a wide variety of food products from chocolate milk to ground meat (Charley and Weaver 1998). 

Amylopectin 

Amylopectin is generally considered to be the major component of starch, but starches 

can vary widely in their amylopectin contents. For example, normal maize starch contains 70°/o 

amylopectin while waxy maize and high-amylase maize starches contain 100, and 20-50~/o 

amylopectin, respectively Gohnson 2000). Amylopectin molecules contain glucose units bonded 

by a-1-4 linkages with approximately 5~/o a-1-6 branch points, and an average branch chain 



www.manaraa.com

6 

length of degree of polymerization (dp) 20 (Whistler and Daniel 1984, Robyt 1998). The 

molecular weight of amylopectin ranges from 10- to 108, which is much larger than the 

molecular \Veight of amylase (approximately 106
) ~bistler and Be.Miller 1997). 

Amylopectin molecules are made of A, B, and C chains. A chains are attached via the 

reducing end in a-1-6 branch linkages to B chains or the C chain. B chains are attached to other 

B chains or the C chain, just as A chains are, but they differ in that they carry A or B chains. 

There is only one C chain per amylopectin molecule, and this chain is distinguished from the 

others because it carries a reducing end. The A to B chain ratio is referred to as the degree of 

multiple branching (!vfanners 1985), and this ratio has been used to study amylopectin structure 

(Altwell et al 1980). Many different models of amylopectin molecular structure have been 

proposed, but the most widely accepted is the cluster model by French (1972), Figure 1A. 

Hizukuri (1986) defined this model further, as shown in Figure 1 B, and this is the currently 

accepted model of amylopectin structure. 

Amylose 

Amylase is the minor component in most starches, accounting for 30% of normal maize 

starch, but it makes up 50 to 80% ofhigh-amylose maize starches Gohnson 2000). Amylase 

differs from amylopectin in branching pattern, chain length, and molecular weight. Until Peat et 

al (1949) discovered that f3-amylase hydrolysis of amylase was incomplete (70%) amylase was 

thought to be completely linear. Complete hydrolysis was accomplished with the addition of 

pullulanase, indicating the presence of some a-1-6 branch linkages (Hizukuri et al 1981, Takeda 

and Hizukuri 1989). Further studies showed that amylase contains an average of 2. 9 branch 

chains per molecule; the average normal maize amylase molecule is made of 990 glucose units 

(Takeda et al 1988, Suzuki et al 1994). 
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Figure 1. Molecular models for amylopectin structure. The cluster model proposed by French 
(1972) (A) and cluster model with further definition by Hizukuri (1986) (B). 
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Amylase exists as random coils in neutral, aqueous solutions, but easily forms helical 

complexes of 6 to 8 glucose units per turn with complexing agents such as alcohols or fatty acids 

(Rundle and French 1943, Banks et al 1971, Davies et al 1980,Jane and Robyt 1984). The 

tendency of amylose to complex ,vith n-butyl alcohol allows for separation of amylase and 

amylopectin, and blue amylase-iodine complexes allow amylose to be quantified 

spectrophotometrically (Schoch 1964, Banks et al 1974). Complexed amylase exhibits an X-ray 

diffraction pattern known as a V-pattern (Winter and Sarko 1974, Davies et al 1980). 

Intermediate Component 

Lanskey et al (1949) reported the discovery of a starch component with iodine-binding 

capacity and f3-amylolysis limits between those observed for amylase and amylopectin. The 

amount and fine structure of this component varies with the maturity and genetic background of 

its source (Banks et al 1974, Wang et al 1993, Kasemsuwan et al 1995, Hizukuri 1996). As the 

degree of branching and molecular weight definitions of amylase and amylopectin are not 

completely clear, it is difficult to exactly define intermediate components. Further studies are 

needed in this area. 

Granules 

Amylase, amylopectin, and intermediate components of starch are packed into semi-

crystalline structures called granules (French 1972, Hood 1982). These structures are complex 

arrangements of macromolecules, yet they are relatively tiny. One pound of maize starch 

contains approximately 800 billion granules (Charley and Weaver 1998). Figure 2 shows a model 

of how amylase and amylopectin might be arranged in a starch granule, as proposed by Lineback 

(1984). The size and shape of starch granules vary greatly. Starch granules range in size from 

0.5 to 100 µmin diameter, and can be round, oval, or polygonal with smooth or rough surfaces, 



www.manaraa.com

9 

as reYealed by scanning electron microscopy Oanc et al 1994). Light microscopy is also a useful 

tool for studying starch granular structure. Under polarized light, starch granules demonstrate 

birefringence patterns knO\vn as Maltese crosses. The center of the Maltese cross corresponds 

to the granule hilum, which is thought to be the starting point of biosynthesis (French 1984). 

Jane and Shen (1993) found that amylose molecules are present through the granule, but are 

more concentrated at the periphery than the core of the granule. Growth rings are concentric 

circles of alternating more and less densely packed material that have been found in starch 

granules by examination under a light microscope (Eliasson and Gudmundsson 1996). 

Figure 2. Model of starch granule proposed by Lineback (1984). 

Starch granules can be classified by their X-ray diffraction patterns into A, B, and C-type 

starches. A-type starches have shorter average branch chains than B-type starches (Hizukuri et 

al 1983, Hizukuri 1985, Jane et al 1999). Jane et al (1999) found that A-type starches generally 
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have shorter peak chain lengths and larger proportions of short chains than do B-type starches. 

C- type starches are intermediate bet\veen A and B-t:ype starches (\Vu and Sarko 1977). Normal-

maize starch is an example of an A-type starch; potato starch is an example of a B-type starch. 

The unit cell structures of A and B-type starches are shO\vn in Figure 3. 

Figure 3. Unit cell and helix packing of B-type ~eft) and A-type (right) starches (Wu and Sarko 
1978 a, b). 

Minor Components 

Phosphorous and lipids are the most common non-starch minor components found in 

starch granules. These minor components can significantly affect the physical properties of 

starches, even though their concentrations are small. Starch granules contain surface lipids, or 

non-starch lipids, and internal lipids, also known as monoacyl lipids (Morrison 1988). Cereal 

starches contain internal lipids in the form of free fatty acids and lysophospholipids (Schoch 

1942, Morrison 1988), but there are not significant amounts of lipids in root or tuber starches 
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(Swinkels 1985, Morrison 1988). Some evidence suggests that internal lipids arc present in the 

amorphous region of the granule (i\forrison et al 1993). Phosphate monoesters and 

phospholipids are the two main forms of phosphorous found in native starch granules. 

Phosphate monoesters are the most prominent form of phosphorous in root and tuber starches 

whereas phospholipids are the most prominent form in cereal starches (Hizukuri et al 1970, 

Tabata et al 1975). Waxy cereal starches are an exception because they generally contain 

substantially less phosphorous than normal starches, and the phosphorous present is in the form 

of phosphate monoesters rather than phospholipids (Lim et al 1994). These t\vo forms of 

phosphorous in starches have opposite effects on the starch pasting properties. Phospholipids 

have been shown to decrease peak viscosity (Medcalf et al 1968) and increase paste opacity 

(Swinkles 1985), but phosphate monoesters increase paste clarity and peak viscosity (Hamilton 

and Paschall 1967). 

Gelatinization and Retrogradation 

Gelatinization of starch granules occurs when starch is heated in water, and is evidenced 

by irreversible loss of birefringence, and loss of crystallinity (French 1984). Different starches 

gelatinize at different temperatures.Jane et al (1992) correlated amylopectin branch chain length 

to gelatinization temperature, and found that longer branch chain lengths result in higher 

gelatinization temperatures. Many authors have proposed that gelatinization temperatures 

depend on granule size (Banks and Greenwood 1975), degree of crystallinity (Zobel 1984), 

presence of lipids (Morrison 1988) and phosphorous derivatives (Lim and Seib 1993). 

After gelatinization is complete, continued heating in water results in starch pasting. 

Stored gelatinized starch or starch paste undergoes a process kno\vn as retrogradation. During 

retrogradation, gelatinized starch molecules reassociate into an ordered structure (Atwell et al 
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1988). Retrogradation happens promptly when linear amylase molecules align and re-associate; 

amylopectin also involves the retrogradation process (Schoch and French 1949, D' Appolonia 

and :Morad 1981). 

Crystalline Properties 

The crystalline properties of starch were discovered by X-ray diffraction around 1920 by 

Scherrer, and later confirmed by Herzog and Jancke (Katz 1928). Katz discovered four different 

diffraction patterns of starch and called them A, B, C, and V. This nomenclature is still used 

today (Zobel 1988). The amount of crystalline material in starch can be quantified from X-ray 

diffraction patterns by several methods. The most common method is to calculate the ratio of 

area in the crystalline peaks to total area (Hermans and W eidinger 1961 ). The method reported 

by Wakelin et al (1959), which utilizes standards of amorphous and crystalline material to create 

a standard curve, has also been used. Although differential scanning calorimetry is not normally 

used as a method for measuring starch crystallinity, Lelievre (1975) pointed out that the enthalpy 

change of starch gelatinization is correlated to degree of crystallinity. 

Starches generally have degrees of crystallinity in the range of 15 to 45% (Zobel and 

Senti 1960), but Nara et al (1978) found that crystallinity measurements change with moisture 

content in the starch sample. Hydrolysis of the amorphous regions in starch granules with 

hydrochloric or sulfuric acid results in Lintner or Naegeli dextrins, respectively (Naegeli 1874, 

French 1972, Robin et al 197 4). The residues from such acid treatment demonstrate crystallinity 

of approximately 80% (Buleon et al 1987) and have been used to study starch structures (Umeki 

and Kainuma 1981,Jane et al 1997). Amorphous starch can be prepared by gelatinizing starch 

in dimethylsulfoxide, hot water, concentrated salt solutions (Jane 1993), or by severe physical 

disruption in a ball mill (Nara et al 1978). 
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Maize and Teosinte 

Discovery of Maize 

Before November 5, 1492, maize was unique to North and South America. On this 

date, two Spaniards traveling ,vith Christopher Columbus explored the interior regions of Cuba 

and reported the finding of a grain called "maiz." There are no references to com or maize in 

ancient Greek, Indian, or Chinese languages, indicating that maize was not present in the Old 

World before its introduction in 1492 (Mangelsdorf 1950). Archeological evidence suggests that 

maize has existed for at least 7,000 years, and there were already 200 to 300 cultivated varieties 

of maize when Columbus and his men discovered it (Beadle 1980). Maize domestication has 

continued during the past 500 years, but still the origin of maize is obscure. 

Teosinte 

There are three major hypotheses regarding the origin of maize. All hypotheses involve 

teosinte, a variable wild grass found in Mexico, Guatemala, and Honduras that roughly 

resembles maize (Beadle 1980). Teosinte has several thin stalks growing from one root system 

rather than one large stalk found in maize, but both plants have tassels (male flowers) at the stalk 

tip and broad, flat, pointed leaves, as shown in Figure 4 (Beadle 1980). While maize plants 

produce one or two large ears with 500-1200 spherical or conical-shaped seeds in thin, flexible 

yellow seed coats Qohnson 2000), teosinte produces spikes bearing 5-6 triangular-shaped seeds 

in stiff, thick, brown and gray speckled seed coats (Robson et al 1976), as shown in Figure 5. 

Therefore, there are some distinct similarities between maize and teosinte, but there are also 

differences that would have required major genetic mutations to overcome. The debate over 

how maize and teosinte are related stems from these differences. 
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Figure 4. An artist's representation of a modem maize plant, left, and a teosinte plant, 
right (Beadle 1980). 
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a 

b 

d 

Figure 5. An artist's representation of a teosinte spike (a), a spike from a teosinte-maize 
cross (b), a spike of tunicate teosinte (c), an ear from a cross of teostine and modern maize 
(d), and an ear of modern maize (e) (Beadle 1980). 
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The Teosinte Hypothesis 

According to the teosinte hypothesis, human selection and cultiYation of teosintc 

resulted in maize as it is today (Beadle 1980). Folklore and the fact that both maize and teosinte 

haYe 10 chromosomes support this thesis. Ancient Aztec language refers to teosinte as teocent!i, 

meaning "God's ear of com," and teosinte is known as madre de maiZ:, or "mother of maize" in 

many regions of Mexico. As early as 1877, botanists believed that tcosinte was the ancestor of 

maize according to Darwinian evolution. Mutations in spike, seed coat, and stalk structure, 

genes could have changed teosinte into maize. Crossing studies between maize and teosinte 

have provided supporting evidence for this transition (Beadle 1980). The teosinte hypothesis is 

currently the most widely accepted explanation for the origin of maize (Doebley 1990). 

Opponents to this hypothesis site the production of teosinte-like plants from crosses 

between maize and tripsacum (a distant wild relative of maize) as evidence that maize did not 

descend from teosinte, but rather teosinte descended from maize (M:angelsdorf 1950). Iltis 

(1983) noted that no intermediates between maize and teosinte have been found to support the 

existence of a gradual evolution from teosinte to maize. Eubanks (1997) reported that progeny 

of crosses between perennial teositne and tripsacum demonstrated properties similar to maize, 

so teosinte domestication may not have been the route to modem maize. 

The Pod Com Hypothesis 

The pod com hypothesis states that modem maize descended from an ex-tinct form of 

wild pod com, and teosinte resulted from hybridization between ancient com and tripsacum 

(Mangelsdorf 1950). This theory was later changed to state that teosinte resulted from 

hybridization between ancient (now extinct) maize and tripsacum, and modem maize resulted 

from hybridization between teosinte and maize (Wilkes 1979, Mangelsdorf 1983, 1986). 
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Recently reported success in crossing Z. diploperennis lltis, DoebJ~,y & Guzman (a diploid perennial 

teosinte) with tripsacum to produce a plant with some maize-like qualities supported this 

hypothesis. According to Eubanks (1997), this crossing study indicated that tripsacum might 

have played an important role in the ancestry of maize. Mangelsdorf (1950) stated that the 

discovery of wild, primitive pod com was the strongest evidence to support this theory. 

Challengers of the pod com hypothesis note that tripsacum and maize do not cross 

naturally (Beadle 1980). Man-made tripsacum-maize crosses are usually sterile, and thus could 

not have resulted in teosinte (Beadle 1980, Eubanks 1997). Iltis (1983) points out that 

Mangelsdorf (1950, 1983, 1986) did not explain the origin of the wild maize that supposedly was 

domesticated into modem maize. In addition, organelle DNA variation provides biochemical 

evidence (fimothy et al 1979) and the existence of several distinct teosinte taxa provides 

morphological evidence (Doebley and Iltis 1980) that teosinte could not have originated from a 

cross between maize and tripsacum. 

The Catastrophic Sexual Transmutation Hypothesis 

The catastrophic sexual transmutation hypothesis is based on the theory that species go 

through relatively short periods of time in which basic structural changes occur, followed by 

long periods of little change (Stanley 1979). Iltis (1983) suggests that modem maize resulted 

from a relatively short time period in which the male rather than the female inflorescence of 

teosinte became the female maize ear. The tips of teosinte stalks have male tassels while the 

inner region of the plant is hormonally female. If the lower branches were shortened by some 

change in growing environment, then the tassels would be in female territory rather than male, 

and thus \vould produce female rather than male flowers. This sexual change in the terminal 

spike upset the entire physiological balance of the plant because suddenly the female spike 
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became the main nutrient sink. Therefore, one large ear (found in maize) rather than several 

small seed spikes (found in teosinte) was formed. In order for this to occur, abnormal 

conditions such as cold or wet summers, short grm.ving seasons, or cold nights must have caused 

shortening of the branches, and farmers must have noticed, harvested, and planted the mutated 

plants (Iltis 1983). 

Dorweiler and Doebley (1997) reported evidence against this hypothesis. They found 

one gene locus (teosinte glume architel1ttre 1, tga1) which controls the structure of glumes 

(connection between the seed and spike) in teosinte plants. When maize \Vas modified to 

contain this teosinte gene, thicker, more brittle glumes resulted. The large effect of one genetic 

mutation was interpreted to mean that teosinte slowly evolved into maize through a series of 

changes involving a small number of genes, but each mutation had a large effect. Doebley and 

Stec (1991 ), Szabo and Burr (1996) supported this conclusion. The catastrophic sexual 

transmutation theory is based on tassel and ear glumes having the same origin, but the study by 

Dorweiler and Doebley (1997) showed that tga1 changes glumes in the ear but not the tassel. 

Fundamental structural differences between the tassel and ear glumes that would prevent the 

sexual transformation are ignored by the catastrophic sexual transmutation theory (Dorweiler 

and Doebley 1997). 

Recent Studies on Maize and Teosinte 

Three theories regarding the origin of maize have been proposed and challenged, but 

none have been proven true or false. Recent studies comparing the genes (Doebley and Stec 

1 991, Doebley et al 1994, Szabo and Burr 1996, Dorweiler and Doebley 1 997, Eubanks 1997, 

Wang et al 1999), biochemicals (Stafford 1998), and proteins (Boyer and Fisher 1984, Goldner 

and Boyer 1989) of maize and teosinte have increased knowledge about both plants, but have 
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not successfully determined the origin of maize nor the relationship bet\veen teosinte and 

modern maize. So, the origin of maize remains a mystery today, just as it was on the day of its 

discovery in 1492. 

Glycogen 

Physiological Function 

Glycogen is the polymeric glucose molecule that acts as an energy reserve in mammals, 

bacteria, insects, fish, and other living organisms (Robyt 1998). The structure of glycogen is 

similar to that of amylopectin, the highly branched molecule of starch, in that both structures are 

made of a-1-4 linked glucose chains with a-1-6 linked branches. However, the degree of 

branching in glycogen (10%) is notably higher than that in amylopectin (5%), and glycogen is 

non-crystalline and mostly water-soluble while amylopectin in starch granules is semi-crystalline 

and cold-water insoluble. Glycogen branch chains are shorter on average (10 to 12 glucose 

units) than amylopectin branch chains (20 to 23 glucose units) (Marshal 1974). The high degree 

of branching and water-solubility of glycogen are important in its physiological function as a 

reserve energy source, allowing large amounts of glucose to be released quickly when needed 

ry oet and Voet 1995). 

Molecular Structure 

The precise molecular structure of glycogen has been a topic of much discussion. 

Haworth, Staudinger, Meyer, and Whelan all proposed structural models. The Haworth and 

Staudinger models were disproved by debranching studies reported by Larner et al (1952). 

Meyer's glycogen model shmved a tree-like structure in which long chains held shorter branches, 

which in turn held even shorter branches, and the longest chain contained a reducing end 
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(Meyer and Fuld 1941). The Whelan glycogen model was a modification of the Meyer model in 

which all branches were randomly attached and relatively short, including the chain with a 

reducing glucose unit (Gunja-Smith et al 1970, \l/helan 1971). This randomly branched tree 

model is the most widely accepted and has been supported by mathematical models (Matheson 

and Caldwell 1999) and enzymatic studies (Rani et al 1 992). 

Studies of glycogen molecular structure are complicated by the fact that glycogen 

structure changes depending on the grmvth conditions of its source. Matsiu et al (1996) studied 

the fine structural properties of oyster glycogen and found that the proportion of short chains (2 

and 3 dp) was higher in the summer than in the winter, but the branch chain length distribution 

range (2-35 dp) did not change. The possibility of protein involvement with glycogen structure 

also complicates the study of glycogen structure. Chee and Geddes (1977) treated glycogen with 

disulfide bond-breaking chemicals and found that the glycogen molecular weight was affected. 

Also, a protein found in glycogen called glycogenin has been the center of many glycogen 

biosynthesis discussions (Lomako et al 1993, Alonso et al 1995, Lomako et al 1995). 

Cyanobacterial Glycogen 

Cyanobacteria, prokaryotes also known as blue-green algae, have been found to produce 

glycogen (Fogg 1956, Shively 1988). Glycogen accumulates between the thylakoids in the cell 

(Pankratz and Bowen 1963) during the stationary stage of growth if the growth media contains 

an excess amount of carbon and a limiting amount of nitrogen, sulfate, or phosphate (Preiss 

1969). Weber and Wober (1975) found that the branch chain length distribution profile of 

glycogen from Anarystis nidulans, a blue-green alga, was similar to profiles of sweet com 

phytoglycogen, Eschendna coli, Arthrobacter sp., and oyster glycogens, but not amylopectin. All 

glycogen and phytoglycogen samples had monomodal profiles while amylopectin showed a 
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bimodal profile. Chao and Bowen (1971) found that the blue-green alga Nostoc mttscorum 

produced glycogen in a-granules (31-65 nm) that consisted of two equal parts. Purified a-

granules were 95°/o glucose by mass and glycogen-iodine complexes demonstrated absorption 

with a Amax at 410 nm, similar to that observed for shellfish and rabbit liver glycogens, but not 

amylopectin. Fujimori et al (1995) confirmed the iodine-glycogen complex absorption results 

for blue-green alga glycogen. 

Glycogen and Starch Research 

The structural similarities between bacterial glycogen and plant amylopectin and 

advances in genetic research have resulted in studies using bacterial glycogen as models for 

starch biosynthesis. Escherichia coli (Guan et al 1995) and cyanobacteria Synechorystis PCC 6803 

(Yoo et al forthcoming) were genetically altered with starch-synthesizing enzymes from plants 

and the glycogen structures were analyzed. Such studies have failed to produce crystalline 

glycogen (or amylopectin), and they have yet to fully explain the process of starch biosynthesis. 

The glycogen-trimming model of starch biosynthesis (Ball et al 1996) suggests that 

glycogen is directly involved in the biosynthesis of starch amylopectin. According to this model, 

starch is synthesized by careful enzymatic trimming of randomly branched glycogen, and thus 

glycogen is very important in all starch-producing plants as well as the organisms that depend on 

it for energy reserves. However, this model does not completely explain how amylase is formed, 

or how amylase and amylopectin are packed together in the form of a starch granule. Much 

research still needs to be done in the area of starch biosynthesis to gain a complete 

understanding of the starch biosynthesis process. 
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CHARACTERIZATION OF CHALCO TEOSINTE AND MAIZE STARCHES 

Abstract 

A paper to be submitted to Cereal Chemistry 

Catherine Keppel, Linda Pollak,Jay-lin Jane 

Chalco teosinte, BSSS maize, and BSSS maize-Chalco teosinte cross starches \Vere 

isolated, characterized and compared with commercial normal maize starch. Maize seeds 

contained more starch (approximately 70°10) than teosinte (approximately 25%) and protein 

content varied from 6.7% to 13.6°/ti for maize and teosinte seeds. All starches exhibited A-type 

X-ray diffraction patterns, similar degrees of crystallinity, amylopectin molecular weights, and 

amylase contents. However, Chalco teosinte starch granules were small, broken, or hollow 

while other starch granules were spherical or polygonal. Branch chain length distributions 

showed that Chalco teosinte starch contained the highest proportion of short chains (18S%) 

and shorter average chain length (23.5 degree of polymerization) compared with the other 

starches. Differential scanning calorimetry analysis showed that Chalco teosinte starch had the 

lowest onset gelatinization temperature ( 61 °C) and enthalpy change of gelatinization (11.4 J / g), 

but the largest rate of retrogradation (56.2% in 7 days). Pasting properties, determined by using 

a Rapid Visco Analyzer, differed widely with Chalco teositne starch having the lowest peak 

viscosity (135.8 RVU), and BSSS maize-Chalco teosinte cross starch having the highest (187.3 

RVU). Thus, Chalco teosinte starch differed from maize starches in some aspects, but not all. 
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Introduction 

Zea mqys (com or maize) is a member of the t:i,rass tribe Aiqydeae and has been a Yery 

important agricultural crop in the North and South America for thousands of years (Robson et 

al 1976). Today, maize is grown on every continent except for Antarctica; global production 

exceeds 500 million tons annually Oohnson 2000). With the production of such large volumes 

of maize and its importance in the global economy, it is surprising that the origin of maize is still 

debated. One hypothesis states that human selection and cultivation of teosinte, a wild grass and 

the closest living relative to maize found in Mexico, Guatemala, and Honduras, resulted in maize 

as it is today. Archeological evidence suggests that teosinte seeds were part of ancient Mexican 

peoples diets. The use of teosinte in the diet may have provided motivation for people to 

develop it into a more productive plant, one that is now known as maize (Beadle 1980). 

Teosinte seeds are encapsulated in hard, dark brown fruit cases which grow in small ears 

or spikes containing five or si.x loosely arranged seeds. Strong wind or movement causes the 

seeds to scatter (Robson et al 1976). On the contrary, modem maize produces large ears bearing 

500-1200 seeds with soft, yellow coats and no effective mechanism for seed scattering Qohnson 

2000). Wild teosinte grows in the edges of maize fields in Mexico and is believed to improve 

maize qualities (\Vilkes 1967). Reeves (1950) found that crossing teosinte with maize inbreds 

produced maize with greater resistance to heat and drought damage. 

Recent studies have attempted to determine the genetic relationship between teosinte 

and maize, and explain the morphological differences benveen these nvo plants. Donveiler and 

Doebley (1997) identified the gene, teosinte glue architecture!, which controls the thickness and 

stiffness of teosinte and maize seed glumes, and Szabo and Burr (1996) mapped the loci of genes 

controlling several morphological traits that distinguish teosinte from maize. Eubanks (1997) 
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employed DNA techniques to examine the link between maize and its \.vild relatives, teosinte 

and Eastern gamagrass tripsacum. The author crossed teosinte and tripsacum and found that 

the progeny bore traits (inherited from tripsacum) that have been considered to be missing links 

in the origin of maize. In another study, selection during maize domestication was found to 

influence plant morphology. The gene responsible for the morphology difference between 

maize (single, large stalks) and teosinte (multiple, thin stalks) plants is teosinte hranched1. This gene 

is similar in maize and teosinte, but the gene regulatory region differs between these plants, and 

therefore it is thought to influence the morphological differences between maize and teosinte 

(\Vang et al 1999). While these new findings increase understanding of the genetic differences 

between maize and teosinte, questions about the relationship between them still remain. 

Whatever the genetic relationship between teosinte and maize, much of their importance 

in society and science stems from the fact that both plants produce starch. Starch is a semi-

crystalline glucose polymer that serves as an energy storage material in plants, and is the most 

important carbohydrate source in the human diet. Many previous studies have examined the 

genetic and morphological similarities and differences between teosinte and maize plants, but 

few studies have determined differences in their economically important product, starch. This 

study was undertaken to characterize the structural and chemical properties of starch isolated 

from modern maize, Chalco teosinte and a Chalco teosinte-maize cross. Any unique and 

desirable characteristics of teosinte starch could be introduced into maize starch to increase the 

diversity of starch structures and properties and add value to maize starch by selective crossing 

the two plants. 
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Materials and Methods 

BSSS maize seeds \Vere grmvn in Ames, Iowa, 1 990 and BSSS-T eo 11ix seeds were 

grown in Ames, Imva, 1994. BSSS-Teo Mi.xis a Chalco teosinte (combelt adopted for photo 

sensitivity) and BSSS maize cross, created in Iowa State University Agronomy Department and 

randomly mated for several generations. Teosinte seeds were provided by the North Central 

Regional Plant Introduction Station (Ames, IA). Teosinte race Chalco was grown in Federal 

District, Mexico, collected in March of 1988, and teosinte race Zea Luxuraians was grown in 

Juliapa, Guatemala, collected in December of 1975. Teosinte race Central Plateau was a hybrid 

swarm associated with hybrid com and sorghum. The second and third backcrosses used in this 

study were grown in Michoacan, Mexico, collected in November of 1992. Commercial normal, 

or common, maize starch was provided by Cerestar USA, Inc. (Hammond, IN, USA). 

Isoamylase (EC 3.2.1.68) from Pseudomonas anryloderamosa was purchased from Hayashibara 

Biochemical Laboratories, Inc. (Okayama,Japan). Amyloglucosidase (EC 3.2.13) from Rhizopus 

mold was purchased from Sigma Chemical Co. (St. Louis, MO, USA). Sepharose CL-2B gel was 

purchased from Pharmacia, Inc. (Piscataway, NJ, USA). Other chemicals were reagent grade 

and were used without further purification. 

Starch Isolation 

Starches were isolated from BSSS maize and BSSS-Teo Mi.x according to a method 

adopted from Badenhuizen (1964), Kasemsuwan et al (1995), and Watson (1955). Clean, whole 

seeds ,vere steeped in a sodium meta-bisulfite (Na2S20 5) aqueous solution (0.30%) at ambient 

temperature for 24 hrs then ground on high speed in a Waring Blendor (Waring Consumer 

Products, East Windsor, NJ, USA) (3 min) and filtered through a 30 µm nylon screen. The fiber 

fraction was collected, ground (3 min), and filtered through the same nylon screen. Starch was 
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collected by centrifugation (Sorrnll RC-SC, Kendro Laboratory Products, Newtown, CT, USA) 

(6,600 g, 20 min), and the yellow protein layer \Vas removed. This procedure was repeated until 

no yellO\v protein appeared. The isolated starch was then suspended in a 0.1 M-NaCl solution 

with 10% volume of toluene, stirred for at least 1 hr, and allowed to stand until the starch 

settled. The protein-toluene layer \Vas siphoned off and this procedure was repeated until the 

toluene layer was clean. The remaining starch was washed with distilled water (3 times) and 

absolute ethanol (2 times). Starch was collected by filtration on a Whatman No. 4 filter paper 

(\Xlhatman International, Ltd., Maidstone, England), rinsed with ethanol, and dried at 32°C for 

48 hrs. 

Chalco teosinte seeds were soaked in the 0.30% Na2S20 5 solution at ambient 

temperature for 24 hrs and ground (20 sec) to remove the stiff outer seed coats, then soaked in 

fresh 0.30% Na2S20 5 for 18 hrs. Broken seeds were ground (3 min) and washed through a 30 

µm nylon screen. The remaining fiber fraction was ground and washed through the same screen 

three times, then placed in 0.80% Na2S20 5 and soaked at 4°C for 5 days. After soaking, the fiber 

was ground 5 times (2 min each) and washed through a 30 µm screen. The resulting fiber 

fraction was ground 4 times (2 min each) and washed through the same 30 µm screen. Protein 

removal was accomplished by toluene washes as described above. Centrifugation could not be 

used to physically separate protein and starch because the Chalco teosinte starch pellet was very 

easily disrupted and some starch remained in the supernatant even after long periods of 

centrifugation. Therefore, all protein was removed by toluene washes. Starch was washed and 

collected as described above. One batch of starch was isolated from each starch source due to 

limited sample quantities. 
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Starch Content 

Starch content was determined according to a method adopted from Perrera ct al (2001) 

and Umemoto et al (1995). Whole seeds (-100 mg) \Vere soaked in 10 mL of distilled water at 

4 °C for at least 80 hrs and ground '\Vith a mortar and pestle. Water was added as needed to grind 

the endosperm and the slurry was centrifuged (15,000 g, 50 min); supernatant was removed, and 

stored at 4°C. Dimethyl sulfoxide (DMSO) (10 mL) was added to the pellet and heated in a 

boiling water bath with stirring for 1 hr, then stirred at room temperature for 48 hrs. Starch-

containing DMSO solution (1 mL) was removed (no hulls), and 5.0 mL of absolute ethanol was 

added. Starch was collected by centrifugation (15,000 g, 25 min) and the supernatant was 

discarded. Distilled water (10 m.L) was added to the starch pellet, heated with stirring for 20 min 

in a boiling water bath, and allowed to cool. The supernatant collected after grinding kernels 

was removed from 4 °C storage, heated in a boiling water bath with stirring for 40 min, cooled to 

room temperature, and the volume was recorded. From this point on, supernatant and DMSO-

treated solutions were treated identically. An amyloglucosidase (AMG) solution (activity 80 

units/m.L) was prepared in 0.1 M sodium acetate buffer, pH 4.5. Sample (300 µL) and AMG 

solution (100 µL) were combined and held at 55°C for 1 hour, then centrifuged at 10,000 g for 

10 min. A blank containing water in place of sample and was treated identically to samples. 

Non-enzyme treated controls were prepared from 300 µL of sample and 100 µL water. All 

samples and controls \Vere analyzed for glucose content using a Sigma Glucose Diagnostic Kit 

(Sigma Chemical Co., St. Louis, MO, USA). Glucose contents of the controls were subtracted 

from the glucose contents of the enzyme treated samples and the total amount of starch-derived 

glucose in each sample was calculated. 
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Protein Content 

Protein contents of BSSS maize, BSSS-Teo ~li.x, Chalco, Zea Luxurians, and Central 

Plateau teosinte seeds were determined in the Grain Quality Laboratory at Iowa State University. 

Whole kernels (approximately 2.0 g) ,vere ground using an MC200 Miracle Mill (Miracle 

Exclusives, Inc., Port Washington, NY, USA) and analyzed by using a nitrogen analyzer (PE 

2410 Series II, Perkin Elmer, Nonvalk, CT, USA). A protein conversion factor of 6.25 was used 

for all calculations. 

Starch Morphology 

Morphology of starch granules was studied by scanning electron microscopy in the 

Bessey Microscopy Facility at Iowa State University. Starches were mounted on brass disks with 

double-sided sticky tape, coated with gold and palladium (60:40), and observed using a scanning 

electron microscope OEOL model 1850, Tokyo,Japan). 

X-Ray Diffraction 

Starch samples (0.7 g) were equilibrated in a 100% relative humidity chamber at 25°C for 

24 hrs. X-ray diffraction patterns were obtained using copper, graphite monochrometer filtered, 

Ka radiation with a Siemens D-500 diffractometer (Madison, WI, USA). Starches were scanned 

from 4° to 37° with a 0.05° step size and a count time of 3 sec. 

Molecular Weight 

Starch samples were prepared for gel permeation chromatography (GPC) according to 

the method of Perera et al (2001). Two milliliters of water (containing 6 mg of starch) was 

injected onto a column (0.75 ID x 45 cm) packed with Sepharose CL-2B gel. An eluent solution 

containing 1 mM NaOH and 25 mM NaCl was used at a flow rate of0.5 m.L/min. Fractions 

were collected at 2.5 min intervals and analyzed for total carbohydrate content (Dubois et al 
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1956) using a test tube-scale analysis (1.4 mL total volume), absorbance was analyzed in an ultra-

microplate reader (Bio-Tek Instruments, Winooski, VT, USA). Blue Yalue was analyzed in 

microplates using chemical reaction reported by Jane and Chen (1992). 

Amylopectin molecular \Veight was determined by high-performance size-exclusion 

chromatography (l IPSEC) equipped with multiangle laser light scattering (MALLS, model 

Da\vn-F, Wyatt Tech. Co., Santa Barbara, CA, USA) and refractive index (RI) (HP1047A, 

Hewlett Packard, Wilmington, DE, USA) detectors. Shodex OH pak KB-G guard column and 

KB-806 and KB-804 analytical columns (Shodex Denko, Tokyo,Japan) were used for sample 

separation. The columns and injector were maintained at 55°C using a CH-460 column heater 

and a TC-50 controller (Eppendorf, Madison, WI, USA). The temperature of the RI detector 

was ~et at 30°C. Distilled, deionized, and degassed water (18.2 MQ cm) was used as the mobile 

phase, flow rate 0.6 m.L/ min (HP1050 series isocratic pump, Hewlett Packard, Wilmington, 

DE), following the method reported by McPherson and Jane (2000). 

Iodine Affinity and Amylose Content 

Iodine affinities of defatted whole starch samples were determined using a 

potentiometric autotitrator equipped with Meterodata recording software (702 SM Titrino, 

Brinkman Instrument, Westbury, NY, USA). Apparent amylase content was determined by the 

method of Schoch (1964). 

Thermal Properties of Starch 

Thermal properties of starches were determined by using a differential scanning 

calorimeter (DSC) equipped with an Intracooler II system and Pyris thermal analysis software 

(DSC-7, Perkin-Elmer, Norwalk, CT, USA). Starch (2 mg, dsb) and water (6 µL) were sealed in 

an aluminum pan and equilibrated for at least 1 hr. Samples were scanned from 10 to 100°C at a 
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heating rate of 10°C/ min using an empty pan as a reference and indium as a standard. Enthalpy 

change (~H), onset temperature (fa), peak temperature (f P), and conclusion temperature (I'J 

were calculated automatically. Analysis of retrograded starches followed the same method after 

the gelatinized samples were stored at 4°C for 7 days. 

Pasting Properties of Starch 

Pasting profiles of starches were determined using a Rapid Visco Analyzer (RVA-4, 

Newport Scientific, Warriewood, Australia). Starch suspensions (8% dsb) were equilibrated at 

50°C for 1 minute, heated to 95°C at 6°C/ min, held at 95°C for 4 min, and cooled down to 

50°C at 6°C. Stirring rate was 160 rpm throughout the experiment. 

Branch Chain Length Distribution of Starch 

Whole starch was debranched using isoamylase according to the method of Jane and 

Chen (1 992). Branch chain lengths were determined using a high-performance anion exchange 

chromatograph with a postcolumn amyloglucosidase reactor and a pulsed amperometric detector 

(HP AEC-ENZ-PAD) (Wong and Jane 1997). Samples were separated using a PA-100 guard 

column and P A-100 anion exchange analytical column (Dionex, Sunnyvale, CA, USA). The 

mobile phase used for separation consisted of two eluents, degassed with helium by a Dionex 

gas module, at a flow rate of 0.5 mL/min. Eluent A (100 mM NaOH), and eluent B (100 mM 

NaOH and 300 mM NaN03) were used in a separation gradient of 99%1 A and 1% B for Oto S 

min with the proportion of eluent B increasing linearly to 8l?lo for 5 to 30 min. The proportion 

of eluent B increased linearly to 30% for 30 to 150 min, then to 45% for 150-200 min. 

Histograms represent quantitative detector response to glucose derived from chains of a 

particular chain length, and not the number of branch chains at that chain length. 
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Experimental Design and Statistical Analysis 

Starch thermal properties ( determined by DSC) ,verc analyzed in triplicate. Amylopectin 

molecular weight (determined by HPSEC and GPC), starch branch chain length distribution 

(determined by HPAEC-ENZ-PAD), pasting properties (determined by RVA), and amylose 

contents (determined by iodine affinity) were analyzed in duplicate. One sample was analyzed 

by scanning electron microscopy and X-ray diffraction. Statistical analysis (AN OVA) of DSC 

data was performed using Excel (Microsoft Co., Redmond, WA, USA) with P=0.05. 

Results and Discussion 

Protein and starch contents of maize and teosinte seeds are presented in Table 1. All 

seeds varied in protein content from 6.7% to 13.6%. BSSS maize, BSSS-Teo Mi..x, and Zea 

Luxurains teosinte seeds had relatively similar proportions of protein (10.3 to 13.6%), while 

Chalco and Central Plateau teosinte seeds contained approximately half as much protein 

(approximately 7%). Starch contents of BSSS maize and BSSS-Teo Mi..x seeds (71.3 to 72.9%) 

were notably larger than teosinte seed starch contents (25.7 to 27.0%). Liao and Konlande 

(1973) found that the Guerrero variety of teosinte seeds contained 12.0% protein and 60.9% 

available carbohydrate (total carbohydrate - fiber). The protein content reported previously by 

Liao and Konlande is comparable to the protein content of Zea Luxurians teosinte seeds 

analyzed in this study, but the starch and available carbohydrates varied widely. 

Differences in starch and protein contents between maize and teosinte seeds were 

expected, considering the differences in seed morphology. Maize seeds (BSSS maize, and BSSS-

Teo Mi..x) were yellow colored, large, and generally spherical with very thin, pliable outer seed 

coats. Teosinte seeds, however, were dark brown or gray with speckles, small and triangular in 



www.manaraa.com

40 

Table 1. Protein and starch contents (0·o db) of whole seeds 

Sample 

HSSS Maize 

BSSS-Teo Mi.x 

Chalco Teosinte 

Central Plateau Teosinte 

Protein Contenta 

10.3 ± 0.4 

13.6 ± 1.1 

6.7 ± 0.1 

7.3 ± 0.7 

Starch Contenth 

72.9 ± 1.4 

71.0 ± 1.0 

27.0 ± 0.7 

26.2 ± 0.1 

Zea Luxurains Teosinte 13.2 ± 0.8 25.7 ± 0.9 
---~------·~ -~--------~---·-----'-----.......i.------
aKernel protein content determined by nitrogen analyzer. Values are means of 1:\vo 
determinations, mean ± standard deviation. 
bStarch content determined by an enzymatic method. Values are means of two 
determinations, mean ± standard deviation. 

shape, and had very thick, brittle outer seed coats. The morphological differences between 

teosinte fruit spikes and maize ears, and differences in seed morphologies have created much 

interest and debate about the relationship between teosinte and maize (!vfangelsdorf 1950, 

Robson et al 1976, Beadle 1980, Iltis 1983, Dorweiler and Doebley 1997). 

Starch granule morphologies, determined by scanning electron micrographs, are shown 

in Figure 1. BSSS maize (Fig. 1A, B) starch granules demonstrated spherical and angular shapes 

common to normal maize starch (Perrera et al 2001) with the exception of some dimpled 

granules. BSSS-Teo MLx starch granules (Fig. 1C, D) were generally similar to BSSS maize starch 

granules, but there were more dimpled granules and some granules had broken or cracked 

surfaces. Teosinte starch granules (Fig. 1 E, F) were spherical, angular, dimpled, broken, or 

hollow. Higher magnification of Chalco teosinte starch granules (Fig. 1 G, H) shows that some 

granules were hollow or contained holes. These hollow starch granules may have contributed to 

the need for starch extraction and purification procedures different from those used for maize 

starch. Even with these differences between Chalco teosinte starch and maize starch granules, 
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Figure 1. Scanning electron mcirographs of BSSS maize (A, B), BSSS-Teo Mix (C, D), 
and Chalco teosinte (E, F, G, H) starch granules. 
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Lhalco teosmte starch granule morphologies ,vere more suntlar to maize starches than to other 

gram, root, tuber, or bean starch granules uane et al 1994). 

X-ray diffraction patterns of starches are shown in Figure 2. Ail starches demonstrated 

typicai A-type X-ray diffraction patterns (Zobel 1 %4). X-ray diffraction patterns indicated 

relatively similar degrees of crystallinity for all starches; crystallinity was calculated as (area in 

crystalline peaks)/ (total area)*100. Degrees of crystallinity were 38, 40, 46, and 40°~_1 for 

commercial normal maize, BSSS maize, BSSS-Teo Mi..x, Chalco teosinte starches, respectively. 

Amylopect:m weight average molecular weights measured by HPSEC were surular for all 

samples, ranging from 7.2 to 7.5 x 10is. Results are given in Table 2. BSSS Maize amylopectin 

had the smallest molecular weight [1.2 x 10is) while BSSS-Teo Mix amylopectin had the largest 

[l .5 x 1 O°). The radii of gyration for amylopectins followed in the same pattern with BSSS-Teo 

1.\1..i.x amyiopectin having the largest gyration radius and (51ts.U nm) and BSSS maize amyiopectin 

having the smallest (311.1 nm). 

Table 2. Molecular weighs and gyration radii of amylopectin from starches 

Sample 
BSSS Maize 

.Bsss-'1'eo .Mix 

Amylopectin Weight Ave 
~' (M".". x 108Y 

7.2 ± 0.1 

7.5 ± 0.02 

7.4 i 0.06 

Gyration Radius of 
Amvlopectin (~) ( nm )b 

311.1 ±3.9 

318.0 ± 2.0 

3i4.9 .l 2.0 
a Molecular weight determined by light scattering and refractive mdex detectors. Values are 
means of two determinations, mean :t standard deviation. 
bGyration radii determined by light scattering and refractive index detectors. Values are 
means of two determinations, mean ± standard deviation. 
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Figure 2. X-Ray diffraction patterns of starches 
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!v1olecular size distributions determined by gel permeation chromatography (GPC) arc 

presented in Figure 3. The first peak in each chromatogram corresponds to amylopectin and the 

second peak corresponds to amylose. Chromatograms from all starches displayed these t\vo 

peaks. Areas under the amylopectin and amylase peaks (total carbohydrate profile) were used to 

calculate the amylase contents of the starches. 

Starch iodine affinities and amylose contents determined by iodine titration and amylose 

contents determined by GPC are shown in Table 3. Starch iodine affinities ranged from 5.16 

(BSSS maize) to 5.62 (Chalco teosinte). Amylose contents were 27.14 and 29.61% for BSSS 

maize and Chalco teosinte starches, respectively. The amylose contents determined by GPC 

were generally in agreement with the amylase contents determined by iodine titration. All 

starches used in this study contained 27 to 29% amylase (determined by iodine titration), which 

is the proportion of amylase expected for normal maize starch. 

The branch chain length distributions of commercial normal maize, BSSS maize, BSSS-

Teo Mix, and Chalco teosinte starches are shown in Figure 4 and the accompanying data are 

given in Table 4. Commercial normal maize, BSSS-Teo Mix, and Chalco teosinte starches 

showed the first peak at branch chain length 13 dp; BSSS maize starch showed the first peak at 

14 dp. The second peak appeared at branch chain length of 45 dp for commercial normal and 

BSSS maize starches, 46 dp for BSSS-Teo Mix starch, and 44 dp for Chalco teosinte starch. The 

average branch chain length was 25.3, 25.1, 24. 7, and 23.5 dp for commercial normal maize, 

BSSS maize, BSSS-Teo Mix, and Chalco teosine starches, respectively. The distribution 

proportions were similar for commercial normal maize and BSSS maize starch. Commercial 

normal maize starch had the lowest proportion of branches 13-24 dp (46.0%) while Chalco 

teosinte starch had the largest (48.2~/o). Chalco teosinte starch also demonstrated the smallest 
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Figure 3. Gel permeation chromatography profiles of starches determined using 
Sepharose CL-2B gel. Chromatograms are typical of each starch sample. 
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Table 3. Amylase contents of maize, maize-teosinte cross and teosinte starches determined by autotitration and gel 
permeation chromatography 

Sample 
Commercial 
Normal Maize 
BSSS Maize 

BSSS-Teo Mix 
Chalco Teosintc 

Iodine Titrationa 
Iodine Affinity Amylose Content (¾t 

5.33 ± 0.04 

5.16 ± 0.25 

5.32 ± 0.24 

5.62 ± 0.02 

28.04 ± 0.21 

27.14 ± 1.30 

28.02 ± 1.28 

29.61 ± 0.11 

Gel Permeation Chromatographyc 
Amylose Content(%) 

30.88 ± 1.31 

26.15 ± 0.41 

32.80 ± 1.04 

29.75 ± 1.05 -------------------------------------------------·-
avalucs arc means of three determinations, mean± standard deviation. 
h Apparent amylase content determined by dividing iodine affinity ·by 0.19. 
"Amylosc content= (area under amylase peak/total area) x 100. Values are means of two determinations, mean± 
standard deviation. 

~ 

°' 
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Figure 4. Branch chain length distributions of whole starches determined by a high-performance 
anion exchange chromatograph equipped \vith a postcolum11 amyloglucosidase reactor and pulsed 
amperometric detector (HPAEC-&"l\JZ-P.AD). Histograms are averages of two runs. 
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Table 4. Branch-chain-length distributions of maize, maize-teosinte cross and teosintc whole starches~ 

Average % Distribution (DP) Highest 
Sample Peakl Peak2 DP 3-12 13-24 25-36 ~37 Detectable DP 
Commercial 
Normal Maize 13 45 25.3 ± 0.4 16.8 ± 0.5 45.5 ± 0.9 16.3 ± 0.4 21.4±0.9 76 
BSSS Maize 14 45 25.1 ± 0.3 16.6 ± 0.1 46.0 ± 0.6 16.5±0.4 20.9 ± 0.9 74 
BSSS-Teo Mix 13 46 24.7 ± 0.4 17.6 ± 0.5 46.0 ± 0.5 16.0 ± 0.4 20.4 ± 0.8 71 
Chalco Tcosinte 13 44 23.5 ± 0.2 18.5 ± 0.3 48.2 ± 0.3 15.6 ± 0.2 17.9 ± 0.5 63 

aDetermined by high-performance anion exchange chromatography with postcolumn amyloglucosidasc reactor and 
pulsed ampcrometric detector (HPAEC-ENZ-PAD). Values are means of two determinations, mean ± standard 
deviation. DP= degree of polymerization. 

~ 
00 
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proportion of branches of DP greater than 37 (17.9°/o). Overall, the branch chain length 

distribution of Chalco teosinte starch ,vas similar to branch chain length distributions of maize 

starches, and different from wheat, barley, and rice starch branch chain length distributions Gane 

et al 1999). 

Table 5. Gelatinization properties of starchesa 

Sample To (OC)b Tp(oCf Tc(OC)d ~H 0/gr 
Commercial 
Normal Maize 67.8 ± 0.2 71.6 ± 0.1 75.2 ± 0.1 12.9 ± 0.4 
BSSS Maize 66.1 ± 0.1 70.7 ± 0.1 75.6 ± 0.2 15.2 ± 0.4 
BSSS-Teo Mix 64.0 ± 0.2 69.1 ± 0.7 74.3 ± 0.3 13.9 ± 1.3 
Chalco Teosinte 61.4 ± 0.3 68.0 ± 0.2 74.2 ± 0.2 11.4 ± 1.4 

tVf O T P Tc = onset, peak, and conclusion temperatures of endotherm determined by 
differential scanning calorimetry. ~H = enthalpy change of gelatinization. Values are 
means of three determinations, mean ± standard deviation. 
bAll samples are significantly different (p = 0.05). 
c All samples are significantly different (p = 0.05). 
dCommercial normal maize starch is significantly different from BSSS-Teo Mix and 
Chalco teosinte starches. BSSS maize starch is significantly different from BSSS-Teo Mix, 
and Chalco teosinte starches (p = 0.05). 
eBSSS maize starch is significantly different from commercial normal maize and Chalco 
teosinte starches (p = 0.05). 

Gelatinization properties of maize and teosinte starches were determined by using DSC, 

and results are given in Table 5. Onset gelatinization temperatures were 67.8, 66.1, 64.0, and 

61.4°C for commercial normal maize, BSSS maize, BSSS-Teo Mi..x, and Chalco teosinte starches, 

respectively. The lower onset gelatinization temperature of Chalco teosinte starch (61.4°C) and 

BSSS-Teo Mix starch (64.0°C) are attributed to the smaller proportion oflong branch chains 

(dp>37), 17.9°/o and 20.4%, respectively, and more short chains (3-12 dp), 18.50,lo and 17.6°lo, 

respectively. The range of temperature from gelatinization onset (f 0 ) to completion (f c) was 
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relatively small for commercial normal maize starch (7.4°C) and larger for Chalco tcosinte starch 

(12.8°C). The gelatinization temperature ranges of BSSS-Teo 'MLx (10.3°C) and BSSS maize 

(9.5°C) starches were between commercial normal maize and Chalco teosinte starches. The 

wider gelatinization temperature range of Chalco teosinte starch may have resulted from the 

damaged granule structures revealed by the SEM micrographs of the starch granules shown in 

Figure 1. Enthalpy change during gelatinization (~H) was the smallest for Chalco teosinte starch 

and the largest for BSSS maize starch, with commercial normal maize and BSSS-T eo 1\fix 

starches in between. 

Table 6. Retrogradation properties of starchesa 

Sample To(°Ct Tp(°C) Tc(°C) AH 0/g) Retrogradation (% Y 

Commercial 
Normal Maize 37.1 ± 0.8 49.1 ± 1.1 61.1 ± 0.3 6.0 ± 0.2 46.4 ± 2.3 
BSSS Maize 39.3 ± 1.4 50.3 ± 0.5 61.8 ± 0.3 6.2 ± 0.6 41.0 ± 3.8 
BSSS-Teo Mix 39.6± 0.6 50.2 ± 0.6 62.1 ± 0.6 6.9 ± 0.1 49.7 ± 5.6 
Chalco Teosinte 40.1 ± 0.3 50.3 ± 0.7 61.1 ± 0.2 6.4±0.8 56.2 ± 3.7 

7 0 TP Tc= onset, peak, and conclusion temperatures of endotherm determined 
by differential scanning calorimetry. Afl=enthalpy change of gelatinization. 
Values are means of three determinations, mean ± standard deviation. 
bCommercial normal maize starch is significantly different from BSSS-Teo Mix and Chalco 
teosinte starches (p = 0.05). 
c % retrogradation = (enthalpy change of retrograded starch/ enthalpy change of native starch) 
*100. 

Properties of retrograded starch were determined by using DSC after gelatinized samples 

were stored at 4°C for 7 days; results are given in Table 6. All retrograded starch samples 

showed lower peak dissociation, or melting, temperatures, wider temperature ranges, and lower 

enthalpies of melting. Although Chalco teosinte starch had the smallest enthalpy change of 
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gelatinization, enthalpy of melting for retrograded Chalco teosintc starch was comparable to the 

other starches. Therefore, Chalco teosintc starch was calculated to have a larger degree of 

retrogradation, 56.2°'0, whereas the other starches demonstrated 46.4, 41.0, and 49.7°;1 

retrogadation for commercial normal maize, BSSS maize, and BSSS-Teo Mix starches, 

respectively. 

Pasting profiles of the maize and Chalco teosinte starches are shown in Figure 5, and the 

accompanying viscosity data are given in Table 7. BSSS-Teo Mi..x and BSSS maize starches 

showed the lowest pasting temperatures (72.2 and 71.3°C) and the largest peak viscosities (174.6 

and 187.3 RVU, respectively). The commercial normal maize and Chalco teosinte starches 

demonstrated larger pasting temperatures (83.4 and 84. 7°C) and smaller peak viscosities (158. 9 

and 135.8 RVU, respectively) when compared with BSSS maize and BSSS-Teo Mix starches. 

Chalco teosinte starch showed the largest breakdown, or shear thinning (79.0 RVU), followed by 

the smallest final viscosity (124.6 RVU) and smallest setback (67.5 RVU) of all starches in this 

study. The severity of shear thinning found in teosinte starch was comparable to that observed 

in waxy maize starch (Perera et al 2001 ). The viscosities at the trough Qowest point) in the 

amylograms were 41.8 and 38.2~/o of the peak for Chalco teosinte and waxy maize starches, 

respectively. The commercial normal maize, BSSS maize, and BSSS-Teo Mix starches 

demonstrated 63.1, 57.8, and 60.0% peak viscosity at the trough. The drastic effects of shear 

thinning found in waxy maize starch have been attributed to the lack of amylase, which is 

thought to maintain granular integrity. However, lack of amylase is not the cause of this 

phenomenon in Chalco teosinte starch because both GPC and iodine titration showed that 

teosinte starch contains approximately 30% amylase. Branch chain length distributions of these 

starches demonstrated that Chalco teosinte starch had shorter branch chain lengths than the 
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Figure 5. Starch pasting properties analyzed by using a Rapid Visco Analyzer 
(8% dsb ). Profiles are averages of two determinations. 
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Table 7. Pasting profiles of maize, maize-teosinte cross and teosinte starchesa 

Sample Peak 1 Breakdown Final Viscosity Setback PeakTimeb Pasting Temp (°C) 

Commercial 
Normal Maize 158.9 ± 5.6 58.7 ± 8.0 180.3 ± 5.0 80.6 ± 7.7 8.6 ± 0.05 83.4 ± 0.3 
BSSS Maize 174.6 ± 8.3 69.8 ± 3.5 199.6±7.1 94.9 ± 4.8 7.6 ± 0.10 72.2 ± 0.3 
BSSS-'l 'eo Mix 187.3 ± 5.4 79.0 ± 2.5 203.7 ± 2.9 95.3 ± 4.9 7.5 ± 0.00 71.3 ± 0.4 
Chalco 'l'eosinte 135.8 ± 1.7 79.0 ± 3.3 124.6 ± 2.5 67.5 ± 4.7 8.6 ± 0.05 84.7 ± 0.5 

'Determined by using a Rapid Visco Analyzer measuring in RVU. Values are means of two determinations, mean ± 
standard deviation. 
bPeak time determined in minutes. 

u, 
\.,) 
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other starches, and the lack of very long branch chains may have been responsible for the large 

shear thinning of Chalco teosinte starch. Overall, the Chalco teosinte starch pasting profile \Vas 

similar to that of commercial normal maize starch, and different from previously reported 

pasting profiles of wheat, barley, and rice starches Oane et al 1999). 

Conclusions 

This study showed that teosinte and maize seeds differ in starch and protein contents, 

with maize seeds having a much greater proportion of starch than teosinte seeds. Starch isolated 

from Chalco teosinte, BSSS maize, and BSSS-Teo Mix was characterized and compared with a 

commercial normal maize starch. Starch granule morphology, determined by SEM, 

demonstrated that some Chalco teosinte starch granules were irregularly shaped, broken, or 

hollow, but were generally similar to commercial normal maize, BSSS maize, and BSSS-Teo Mix 

starch granules. X-ray diffraction showed that all four of these starches were A-type starches 

with only slight differences in diffraction intensities, and molecular weights of amylopectins 

(determined by HPSEC and GPC) were generally comparable. The amylase contents of starches 

(determined by GPC and iodine titration) were also comparable. The major differences between 

these four starches were observed in branch chain length distributions, thermal and pasting 

properties. 

Chalco teosinte starch had a lower onset gelatinization temperature (determined by DSC) 

and lower enthalpy of gelatinization as compared with the maize starches, and the retrogradation 

rate for this starch was relatively high. Pasting profiles, determined by RVA, showed that BSSS 

maize and BSSS-Teo Mix had relatively large peak viscosities, but Chalco teosinte starch had a 

relatively small peak viscosity and a large breakdown. Interestingly, BSSS-Teo Mix demonstrated 
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the largest peak viscosity. Branch chain lmgth distributions showed that all four starches had 

similar branch chain length distribution profiles, but Chalco teosinte starch had the shortest long 

branch chains and average chain length, and BSSS-Teo ~!Lx had the second shortest average 

chain length. In general, Chalco teosinte starch was similar to the maize starches, and 

comparisons with previously published studies showed that Chalco teosinte starch was more 

similar to maize starch than to other major cereal starches. 

Acknowledgments 

We thank Dr. Kit-Sum Wong for her generous technical support, the Iowa Com 

Promotion Board for providing funds, and the North Central Regional Plant Introduction 

Station for providing teosinte seeds. We would also like to thank the ISU Bessey Microscopy 

Facility and Dr. Scott Schlorholtz for their help with the SEM micrographs and X-ray diffraction 

patterns, respectively. 

References 

Badenhuizen, N.P. 1964. General method for starch isolation. Pages 14-15 in: Methods in 
Carbohydrate Chemistry, Vol. 4: Starch. R.L. Whistler, R.J. Smith,J.N. BeMiller, and M.L. 
Wolfrom, eds. Academic Press: London. 

Beadle, G.W. 1980. The ancestry of com. Sci. Am. 242:112-119. 

Dorweiler,J.E., and Doebley,J.F. 1997. Developmental analysis of teosinte glume architecture1: 
a key locus in the evolution of maize (Poaceae). Am. J. Bot. 84:1313-1322. 

Dubois, M., Gilles, K., Hamilton, J., Rebers, P., and Smith, F. 1956. Colorimentric method for 
determination of sugars and related substances. Anal. Chem. 28:350-353. 

Eubanks, M.W. 1997. Molecular analysis of crosses between Trpisacum dactyloides and Zea 
diploperennis (Poaceae). Theor. Appl. Genet. 94:707-712. 



www.manaraa.com

56 

Iltis, H.H. 1983. From teosinte to maize: the catastrophic sexual transmutation. Science 22:886-
894. 

Jane,]., and Chen,J.-F. 1992. Effect of amylose molecular size and amylopectin branch chain 
length on paste properties of starch. Cereal Chem. 69:60-65. 

Jane,J., Chen, Y.Y., Lee, L.F., McPherson, A.E., Wong, K.-S., Radosavljevic, M., and 
Kasemsuwan, T. 1999. Effects of amylopectin chain length and amylose content on the 
gelatinization and pasting properties of starches. Cereal Chem. 75:629-637. 

Jane,]., Kasemsuwan, T., Leas, S., Zobel, H., and Robyt,J.F. 1994. Anthology of starch granule 
morphology by scanning electron microscopy. Starch/Starke 46:212-219. 

Johnson, L.A. 2000. Com: The Major Cereal of the Americas. Pages 38-39 in: Handbook of 
Cereal Chemistry and Technology. K. Kulp and J.G. Ponte,Jr., eds., Marcel Dekker: New 
York. 

Kasemsuwan, T., Jane, J., Schnable, P., Stinard, P., and Robertson, D. 1995. Characterization of 
dominant mutant amylose-extender (Ael-5180) maize starch. Cereal Chem. 72:457-464. 

Liao, S.C. and Konlande, J.E. 1973. A proximate analysis of the Guerrero variety of teosinte 
(Euchlaema mexicana). Ecol. of Food and Nutr. 2:219. 

Mangelsdorf, P.C. 1950. The mystery of com. Sci. Am. 183:20-24. 

McPherson, A.E. and Jane, J. 2000. Extrusion of cross-linked hydroxypropylated com starches. 
II. Morphological and molecular characterization. Cereal Chem. 77 :326-332. 

Perera, C., Lu, Z., Sell, J ., and Jane, J. 2001. Comparison of physicochemical properties and 
structures of sugary-2 cornstarch with normal and waxy cultivars. Cereal Chem. 78:249-256. 

Reeves, R.G. 1950. The use of teosinte in the improvement of com inbreds. J. Agron. 42:248-
251. 

Robson, J.R.K., Ford, R.I., Flannery, K.V., and Konlande, J.E. 1976. The nutritional. 
significance of maize and teosinte. Ecol. of Food and Nutr. 4:243-249. 

Schoch, T.J. 1964. Iodimetric determination of amylose. Potentiometric titration: standard 
method. Pages 157-160 in: Methods in Carbohydrate Chemistry, Vol. 4: Starch. R.L. 
Whistler, R.J. Smith, J .N. BeMiller, and M.L. Wolfrom, eds., Academic Press: London. 

Szabo, V.M., and Burr, B. 1996. Simple inheritance of key traits distinguishing maize and 
teosinte. Mol. Gen. Genet 252:33-41. 

Umemoto, T., Nakamura, Y., and Ishikura, N. 1995. Activity of starch synthase and amylose 
content in rice endosperm. Phytochemistry 40:1613-1616. 



www.manaraa.com

57 

\Vang, R., Stec, A., Hey, J., Lukens, L., and Doebley, J. 1999. The limits of selection during 
maize domestication. Nature 398:236-238. 

Watson, S.A. 1955. Corn starch isolation. Pages 3-5 in: Methods in Carbohydrate Chemistry, 
Vol. 4: Starch. R.L. Whistler, R.J. Smith, J.N. Bel\fi.ller, and M.L. Wolfrom, eds., Academic 
Press: London. 

Wilkes, G.H. 1967. Teosinte: the closest relative to maize. Bussey Institution of Harvard Univ.: 
Cambridge, MA. 

Wong, K.-S., and Jane,]. 1997. Quantitative analysis of debranched amylopectin by HPAEC-
p AD with postcolumn enzyme reactor. J. Liq. Chromatogr. Relat. Technol. 20:297-310. 

Zobel, H. 1964. X-ray analysis of starch granules. Pages 109-113 in: Methods in Carbohydrate 
Chemistry, Vol. 4: Starch. R.L. Whistler, R.J. Smith,J.N. BeMiller, and M.L. Wolfrom, eds., 
Academic Press: London. 



www.manaraa.com

58 

CRYSTALLINITY AND MELTING PROPERTIES OF A STARCH MODEL 
SYSTEM 

Introduction 

Two methods for determination of crystallinity in semi-crystalline materials have been 

adopted from other research areas and used heavily in starch research. Wakelin et al (1959) 

created a model system for determination of crystallinity in cotton samples, and Hermans and 

Weidinger (1961) calculated degree crystallinity of polyethylene samples by comparing area of 

amorphous backgrounds to crystalline peaks. Since then, much work has been done to develop 

accurate methods of starch crystallinity determination (Cairns et al 1997, Gemat et al 1990, Paris 

et al 1999, Polizzi et al 1990). Other methods have been developed to determine relative 

crystallinity of starch samples (Demeke et al 1999, Forssell et al 1999). 

Differential scanning calorimetry (DSC)-determined enthalpy change of starch 

gelatinization can theoretically reflect the degree of crystallinity in a starch sample (Ahmed and 

Leliever 1978). Some authors have made comparisons between X-ray diffraction-determined 

degree of crystallinity and DSC-determined enthalpy change of melting (Leliever, 1975), but little 

work has been done to determine the exact relationship between degree of crystallinity and 

enthalpy of melting in starch samples. The goal of this study was to develop a relationship 

between crystallinity and enthalpy change of melting in a starch model system. Normal maize 

starch Naegeli dextrin and gelatinized, amorphous waxy maize starch were used as the crystalline 

and amorphous standards, respectively. Individual components and mixtures thereof were 

analyzed by X-ray diffraction and DSC and trends in behavior were determined. 
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Materials and Methods 

Amorphous Waxy Maize Starch 

Three grams of waxy maize starch was wetted with 30 mL of distilled water and 

dispersed in 270 mL Dimethylsulfoxide (DMSO). The starch-DMSO solution was heated in a 

boiling water bath with stirring for 1 hr and stirred at room temperature for 24 hrs. Amorphous 

starch was precipitated with 3 times volume (900 mL) of 100% methanol and collected by 

filtration on a Whatman No. 5 filter paper (Whatman International, Ltd., Maidstone, England). 

Starch was resuspended in 250 mL of 100% methanol, stirred vigorously for 30 min, and 

collected by filtration. This procedure was repeated 4 times, until a fine white powder resulted. 

Amorphous starch was dried for 24 hrs at 32°C, weighed into 4 separate samples (0. 700, 0.525, 

0.350, and 0.175 g), and stored at ambient temperature and humidity until use. 

Naegeli Dextrin 

Naegeli dextrin from normal maize starch was prepared according to the method 

reported by Jane et al (1997). Starch was suspended in a 15% (v / v) sulfuric acid solution, held at 

38°C for 12 days, and gently agitated each day during treatment. Upon completion of the 

hydrolysis period, Naegeli dextrin was washed with deionized water until all sulfuric acid was 

removed. Before use in this experiment, dried Naegeli dextrin was suspended in deionized 

water, collected by filtration on a Whatman No. 5 filter paper, and washed three times with 

100% ethanol. The fluffy white powder was dried for 24 hrs at 32°C, weighed into 4 separate 

samples (0. 700, 0.525, 0.350, and 0.175 g), and equilibrated at 100% relative humidity before X-

ray analysis. After X-ray analysis, samples were stored in sealed vials until DSC analysis. 
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X-Ray Diffraction 

Immediately before X-ray diffraction analysis, Naegeli dextrin and amorphous waxy 

maize starch samples were mixed in appropriate proportions for a total mass of 0. 700 g. 

Mixtures were stirred and ground lightly with a mortar and pestle to make a homogenous 

powder. X-ray diffraction patterns were obtained using copper Ka radiation, graphite 

monochrometer filtered, with a Siemens D-500 diffractometer (Madison, WI, USA). Samples 

were scanned from 4 to 37 Two-Theta with a 0.05 Two-Theta step size and a 3 sec count time. 

Background determinations were made after smoothing with an 11-point parabolic filter. Areas 

were calculated using Shadow (Materials Data, Inc., Livermore, CA, USA) software. Percent 

crystallinity was calculated as the percent of area in the peaks relative to the total area. 

Differential Scanning Calorimetry 

Thermal properties were determined by using differential scanning calorimetry (DSC) 

equipped with an Intracooler II system and Pyris thermal analysis software (DSC-7, Perkin-

Elmer, Norwalk, CT, USA). Sample (S mg) and distilled water (40 or SO µL) were combined in a 

ratio of 1 :8 or 1:10 (starch:water), sealed in a stainless pan, and equilibrated for at least 1 hr. 

Samples were scanned from 25 to 150°C at a heating rate of 10°C/ min using an empty pan as a 

reference with indium and cyclohexane as standards. Enthalpy change (AH), onset gelatinization 

temperatures (f0), peak temperatures (f P), and conclusion temperatures (fc) were calculated 

automatically. 

Results and Discussion 

X-ray diffraction patterns of amorphous waxy maize starch, normal maize starch Naegeli 

dextrin, and mixtures thereof are shown in Figure 1. These diffractograms demonstrate that the 
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treated waxy maize starch was completely amorphous and the Naegeli dextrin was highly 

crystalline. Peak intensities increased, but the diffraction intensity at 12.5 Two-Theta from the 

amorphous background decreased as the percentage of Naegeli dextrin increased. Diffraction 

intensities for all samples were measured at 12.5 Two-Theta, and the relationship between 

diffraction intensity and Naegeli dextrin content.was determined as shown in Figure 2. 

Diffraction intensities decreased linearly as the amount of Naegeli dextrin increased (R2 = 

0.9953). While degree crystallinity (percent crystalline material in the sample) appears to be 

related to diffraction intensity at 12.5 Two-Theta, it can only be calculated from diffraction 

intensity at 12.5 Two-Theta if a standard curve is prepared from samples of known degree 

crystallinity. 

Diffraction intensity was measured at 12.5 Two-Theta because there were no nearby 

peaks in the diffractograms to interfere with the background, and it was early in the analysis so 

the samples remained relatively moist. Naegeli dextrin samples were equilibrated at 100% 

relative humidity (RH) before analysis, but amorphous samples were not. High humidity 

treatment of the amorphous starch may have provided opportunity for annealing or made the 

samples moist and sticky, thus causing technical difficulties in loading samples in the X-ray 

sample holder. X-ray diffraction was performed at ambient humidity (-50%), so Naegeli dextrin 

samples lost moisture during the course of X-ray diffraction analysis but amorphous portions of 

the mixtures presumably absorbed moisture. 

Buleon et al (1987) reported that background and peak intensities differ with moisture 

content of starch samples. The moisture effect was examined by a simple experiment performed 

with potato starch. Potato starch was equilibrated at 52% RH or 100% RH before X-ray 
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Figure 1. X-ray diffraction patterns for amorphous waxy maize starch-Naegeli dextrin 
mixtures. A= 100% Naegeli Dextrin, B= 25% amorphous, 75% Naegeli Dextrin, C= 
50% amorphous, 50% Naegeli Dextrin, D=7 5% amorphous, 25% Naegeli Dextrin, E= 
100% amorphous. 
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Figure 2. Naegeli dextrin content and background intensity at 12.5 Two-Theta. 
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analysis, and the degree of crystallinity was calculated to be 28 or 52%, respectively (degree of 

crystallinity was calculated by the area method that will be discussed later). Given the great 

impact of humidity treatment on calculated crystallinity, diffraction intensity at 12.5 Two Theta, 

early in the analysis, was used to avoid complication by any drying effect that may have been 

present in the samples. 

Future experiments with this starch model system could be designed to avoid such a 

large drying effect. For example, both Naegeli dextrin and amorphous starch samples could be 

stored at ambient humidity, mixed together, placed in the X-ray sample holder, then equilibrated 

in 100% RH for 12-24 hours before analysis. X-ray analysis could be completed in a humidity-

controlled environment at 100% RH. This method would avoid technical complications of 

loading saturated samples, and no drying would take place during X-ray analysis. 

Peak area has long been used to calculate degree of crystallinity (Hermans and Weidinger 

1948, 1961, Wakelin et al 1959). In this experiment, degree of crystallinity was calculated as the 

percent peak area of the total area. Results of this calculation for all samples are given in Table 

1. The calculated degree crystallinity for Naegeli dextrin was 83.6%, which agreed well with the 

reported degree of crystallinity for potato Naegeli dextrin (80.3%) (Nara et al 1983). 

Table 1. Degree crystallinity of Naegeli dextrin-amorphous waxy 
maize samples determined by peak area ratio to total area 

Sample Composition 
Naegeli Dextrin (%) Amorphous (%) 

0.0 100.0 
25.0 75.0 
50.0 50.0 
75.0 25.0 

100.0 0.0 

% Crystallinity 

0.0 
17.5 
37.2 

49.6 
83.6 
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Figure 3 shows the relationship between sample Naegeli dextrin content and the 

calculated degree crystallinity. The sample mi.xtures containing 25 to 75% Naegeli dextrin 

demonstrated a linear relationship between proportion of Naegeli dextrin and degree of 

crystallinity with R2 = 0.99, while all samples demonstrated a linear relationship with R2 = 0.97. 

The observed degree of crystallinity for the 100% Naegeli dextrin sample (83.6%) was larger 

than would be expected from extrapolation of the line fitted to the other four samples (68.2%). 

The difference between the theoretical and observed degree of crystallinity in this sample may 

have been caused by the drying effect. Samples containing relatively dry amorphous starch and 

relatively moist Naegeli dextrin could exchange moisture between the components of the 

mixture, which may have led to accelerated drying of the Naegeli dextrin portion. The dried 

sample may have depressed the intensity of X-ray diffraction, thus leading to low crystallinity 

measurements. 

Differential scanning calorimetry analysis was completed for all samples under two 

conditions: with starch to water ratios of 1 :8 and 1:10. Amorphous starch was extremely sticky 

and absorbed much water, so 8 times mass of water may not have adequately hydrated all of the 

Naegeli dextrin in the mixed samples. The addition of 10 times of water appeared to adequately 

hydrate all samples. Endotherms from 1 :8 and 1:10 starch:water ratios are shown in Figure 4 

and Figure 5, respectively. Results of DSC analysis under both conditions are shown in Tables 2 

and 3 for 1:8 and 1:10 starch:water ratios, respectively. Enthalpy change of melting clearly 

increased as the proportion of Naegeli dextrin increased, but onset temperature of melting was 

not well correlated to proportion of Naegeli dextrin. 
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Figure 3. Crystallinity of amorphous waxy maize starch and Naegeli dextrin 
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Figure 4. Endotherms of amorphous waxy maize starch and Naegeli dexttin (1 :8 
starch:water). A= 100°10 Naegeli Dextrin, B= 25°10 amorphous, 75% Naegeli 
Dextr:111, C= 501;/o amorphous, 50% Naegeli Dextrin, D=75% amorphous, 25~/o 
Naegeli Dextrin, E= 100% amorphous. 
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Figure 5. Endotherms of amorphous waxy maize starch and Naegeli dextrin 
(1:10 starch:water). A= 100% Naegeli Dextrin, B= 25% amorphous, 75% Naegeli 
Dextrin, C= 50% amorphous, 50% Naegeli Dextrin, D=75% amorphous, 25% 
Naegeli Dextrin, E= 100% amorphous. 
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Table 2. Thermal properties of Naegeli dextrin-amorphous waxy maize samples hydrated with water 
(1 :8 starch:water) 

Sample Composition 
Naegeli Dextrin (%) Amorphous (%) T 0 {°C} Tp{°C} Tc{°C} AH Q/g) 

0.0 100.0 N/D N/D N/D N/D 
25.0 75.0 59.3 ± 5.9 75.0 ± 0.5 85.8 ± 7.6 2.3 ± 0.6 
50.0 50.0 54.3 ± 0.6 75.0 ± 0.3 94.2 ± 1.1 7.3 ± 1.5 
75.0 25.0 53.1 ± 1.6 74.7 ± 0.1 93.1 ± 0.1 12.0 ± 0.4 
100.0 0.0 53.1 ± 0.7 81.7 ± 0.8 106.6 ± 3.0 18.5 ± 1.1 

To TP Tc= onset, peak, and conclusion temperatures of endotherm determined by differential scanning 
calorimetry. AH = enthalpy change of endotherm. N /D = Value not determined. Values are means 
of three determinations, mean± standard deviation. 

0\ 
\D 
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Table 3. Thermal properties of Naegeli dextrin-amorphous waxy maize samples hydrated with water 
(1 :10 starch:water) 

Sample Composition 
Naegeli Dextrin (%) Amorphous(%) TQ{°C} Tp {°C} Tc{°C} AH Q/g) 

0.0 100.0 N/D N/D N/D N/D 
25.0 75.0 55.8 70.7 84.0 1.6 
50.0 50.0 55.5 ± 0.9 70.9 ± 05 83.2 ± 3.1 4.3 ± 0.7 
75.0 25.0 53.7 75.2 ± 0.5 88.5 ± 1.4 7.4 ± 0.4 

100.0 0.0 59.5 ± 1.7 83.3 ± 0.3 106.2 ± 2.5 13.4 ± 1.0 
Ta TP Tc= onset, peak, and conclusion temperatures of endotherm determined by differential scanning 
calorimetry. ~H = enthalpy change of endotherm. N /D = Value not determined. Values are means 
of three determinations, mean ± standard deviation. 

-.J 
0 
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Figure 6 shows the relationship between percent Naegeli dextrin and enthalpy change 

of melting. The second order relationship between enthalpy change and percent Naegeli dextrin 

indicates the presence of an interaction between the two components of the mixed samples. 

Degree of crystallinity may be calculated from DSC enthalpy data (Wildmann and Reisen 1987), 

but enthalpy values for pure crystalline materials are needed. Such data were not available for 

this experiment. 

Figure 7 demonstrates the relationship between peak melting temperature and sample 

composition and Figure 8 shows the relationship between onset melting temperature and sample 

composition. There was a second order relationship between the percent Naegeli dextrin and 

peak and onset melting temperatures, as would be expected for amorphous-crystalline polymer 

blends (Sperling 1992). Melting point depression of miscible polymer mixtures is a known 

phenomenon that has been successfully predicted with models of some polymer blends (Shenoy 

et al 1990). The DSC melting point and enthalpy of melting data collected in this experiment 

demonstrated that mixtures of crystalline and amorphous starch materials exhibited melting 

point depression. However, it is difficult to compare this starch model system to other well-

studied polymeric model systems because this starch model system was composed of a solvent, 

and crystalline and amorphous materials; many other systems do not have solvents. 

Conclusions 

Two methods of analysis, DSC and X-ray diffraction, were used to measure crystallinity 

in a starch model system containing Naegeli dextrin as the crystalline portion and amorphous 

waxy maize starch as the amorphous portion. Both methods were shown to measure parameters 

related to degree of crystallinity. X-ray diffraction intensities at 12.5 Two-Theta linearly reflect 
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Figure 6. Enthalpy change in Naegeli Dextrin-amorphous starch mixtures 
determined by DSC. 
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Naegeli dexttin content of samples, and potentially could be correlated to degree of crystallinity. 

Peak areas could be used to calculate degree of crystallinity, but sample dehydration complicated 

the results. DSC analysis of sampies in this model system showed that enthalpy change of 

gelatinization, onset and peak gelatinization temperatures were all affected by sample 

compositions in predictable ways. More precise information could be obtained by controlling 

the humidity of samples during X-ray diffraction analysis to prevent dehydration. 
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EFFECTS OF GROWTH CONDITIONS ON AMOUNT AND STRUCTURE OF 

GLYCOGEN PRODUCED BY CYANOBACTERIA SYNECHOSYSTIS PCC 6803 

Introduction 

Glycogen is a glucose polymer that serves as a reserve energy source in mammals, 

bacteria, insects, fish, and other living organisms (Robyt 1998). The structure of glycogen is 

similar to that of starch amylopectin, the glucose storage substance found in plants, in that both 

molecules are made of a-1-4 linked glucose chains with a-1-6 linked branches. However, there 

are notable difference between the structures of glycogen and amylopectin. Glycogen is 

considered to be cold water-soluble and is highly branched (10%) while amylopectin in starch 

granules is insoluble in cold water and less branched (5%). The average branch chain length of 

glycogen is between 10 and 12 glucose units, and the average branch chain length of amylopectin 

between 19 and 31 O ane et al 1999). The high degree of branching found in glycogen is key to 

the physiological function of glycogen. Glucose is released quickly and in large amounts when 
I 

necessary, making glycogen an effective source of reserve energy in living organisms 0J oet and 

Voet 1995). 

Cyanobacteria are prokaryotes also known as blue-green algae that have been found to 

produce glycogen (Fogg 1956, Shively 1988). Glycogen is accumulated as storage material in the 

stationary stage of growth if the growth media contains an excess amount of carbon and a 

limiting amount of nitrogen, sulfate, or phosphate (Preiss 1969). This study was performed to 

determine how severely carbon and nitrogen limitation effect glycogen accumulation in 

cyanobacteria (Synechorystis PCC 6803). Cyanobacteria were grown in BG-11 media (Rippka et al 

1979) with various amounts of glucose as the carbon source and sodium nitrate as the nitrogen 
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source. The amount of glycogen accumulated under four different conditions was measured by 

chemical and enzymatic methods. The molecular structure of glycogen extracted from bacteria 

grown under each media condition was examined by debranching with isoamylase and 

quantitative analysis of the branch chain length distribution. 

Materials and Methods 

Media and Growth Conditions 

BG-11 liquid media was prepared according to the method reported by Rippka et al 

(1979). The media were prepared in three separate steps. First, a concentrated trace metal mix 

was prepared from the contents listed in Table 1. The trace metal mix was autoclaved for 20 

minutes for sterilization, which resulted in the formation of a purple-colored precipitate. 

Table 1. Trace metal mix for BG-11 cyanobacterial growth media 

Chemical Chemical Name Grams/Liter Molarity (mM) 

H3B03 Boric Acid 2.86 46.30 
MnC12•4H20 Manganese chloride 1.80 4.15 
ZnS04•7H20 Zinc sulfate 0.22 0.77 

Na2Mo04•2H20 Sodium molybdate 0.39 1.61 
dihydrate 

CuS04•5H20 Cupric sulfate 0.079 0.32 
Co(N03) 2•6H20 Co halt (II) nitrate 0.0494 0.17 

hexahydrate 

Second, a 100 times concentrated solution of BG-11 liquid media (100 X BG-11) was 

prepared and autoclaved for 20 minutes, or filter sterilized. The contents of this solution are 

listed in Table 2. Prepared 100 X BG-11 was clear to light purple in color. Ethylenediamine 

tetraacetic acid disodium salt dihydrate (EDTA) buffer pH was adjusted to 8.0 with 50% (w /w) 
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sodium hydroxide. When nitrogen-limiting media was prepared, the amount of sodium nitrate 

was reduced from 149.58 grams (24.63 grams nitrogen per liter) to 8.38 grams for a final 

concentration of 1.38 grams of nitrogen per liter of 100 X BG-11 (Weber and Wober 1975). All 

other components remained unchanged. 

Table 2. One hundred times BG-11 (100 X BG-11) cyanobacterial growth media 

Chemical 

NaN03 

MgS04•7H20 
CaC12•2H20 

(~3 FI.101I (CC)O.l·I).} 
Na2EDTA2 

Trace Metal Mix 

Chemical Name 

Sodium nitrate 
Manganese chloride 

Calcium chloride 
Citric Acid 

EDT A disodium salt 
dihydrate 

Quantity /Liter 

149.581 

7.49 g 
3.60 g 
0.60 

1.12 mL of 0.25 M 
pH8.0 
100mL 

Substitute 

94.1 gNH4Cl 
3. 7 g anhydrous MgSO 4 

2. 72 g anhydrous CaCl2 

1 Use 8.38 grams for nitrogen limiting media 
2Ethylenediamine tetraacetic acid disodium salt dihydrate: 
(H02CCHz)2N CH2CH2N (CH2C02N a) 2•2H20 

Table 3. BG-11 cyanobacterial growth media 

Solution 

100 X BG-11 
Tricine1 Buffer pH 8.0 

Na2C03 

K 2HP04 

Chemical Name 

Tricine 
Sodium carbonate 

Potassium phosphate 
dibasic 

Stock Concentration 

100X 
1.0M 

50 mg/mL (189 mM) 
30 mg/mL (175 mM) 

mL/L of BG-11 

10 
5 
1 
1 

Ferric Ammonium 6.0 mg/ mL 1 
Citrate2 

1Tricine: (HOCHz)3CNHCH2C02H 
2lron (III) ammonium citrate, structure undetermined, U.S. patent 2,644828, 1953 

Third, BG-11 media were prepared from the 100 X BG-11 solution and the other 

ingredients listed in Table 3. Ferric ammonium citrate, sodium carbonate, and potassium 

phosphate stock solutions were filter sterilized rather than autoclaved for preservation. All 
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contents except the heat-sensitive ferric ammonium citrate solution were added before 

autoclaving. Ferric ammonium citrate was added after the media cooled to room temperature. 

A small amount of precipitate formed during autoclaving but the precipitate did not negatively 

influence the growth of cyanobacteria. Tricine buffer pH was adjusted to 8.0 with 50% (w/w) 

sodium hydroxide. 

Supplements such as glucose and antibiotics were added to the BG-11 media according 

to the information listed in Table 4. These chemicals were added to autoclaved, cooled media 

because of heat sensitivity. Stock solutions of supplements were filter sterilized for preservation. 

Table 4. Supplements to liquid or solid BG-11 cyanobacterial growth media 

Chemical Stock Solution Final Concentration mL/L of BG-11 

Glucose 2.5 M (500 X) 5 mM 
Tetracyclin 10 mg/ mL 7 .5 µg/ mL 

DCMU1 10 mM 10µM 
Kanamycin 20 mg/ mL 5-50 µg/ mL 

Spectinomycin 20 mg/ mL 20 µg/ mL 
Sreptomycin 10 mg/ mL 1 O µg/ mL 

Chloramphenicol 15 mg/mL ethanol 7.5 µg/m.L 
13-(3,4-dichlorophenyl)-N-N' -dimethylurea (DCMU) 

2 
0.75 

1 
0.25-2.5 

1 
1 

0.5 

Solid BG-11 media were prepared according to Table 5. The amounts listed in this table 

produced a total of 600 mL of solid media. Ferric ammonium citrate, glucose and/or antibiotics 

were added to the autoclaved media after it had cooled but before it solidified. 

The liquid BG-11 media were prepared in, and the Synechorystesis sp. PCC 6903 

cyanobacteria was grown in, Erlenmeyer flasks that were two to three times larger than the 

volume of media would have required. For example, one liter of media was prepared in a two-

liter Erlenmeyer flask. Large flask sizes were required to prevent media loss during agitation on a 
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Table 5. Solid BG-11 cyanobacterial growth media 

Solution Chemical Name Stock Concentration 

100 X BG-11 100X 
Tricine1 Buffer pH 8.0 Tricine 1.0M 

Na2C03 Sodium carbonate 50 mg/ mL (189 mM) 
K2HP04 Potassium 30 mg/mL (175 mM) 

phosphate dibasic 
Agar 

* Add enough water to make 588 mL of media, autoclave* 
Ferric Ammonium 6.0 mg/mL 

Citrate2 

C60 6H 12 Glucose3 

N~S20 3•6H20 Sodium thiosulfate 
1Tricine: (HOCH2\CNHCH2C02H 

2.5M 
0.18g/ ml (2.27 M) 

mL/600 mL BG-11 

6 
6 

0.6 
0.6 

9.0 g (1.5%) 

0.6 

1.2 
10mL 

2Iron (III) ammonium citrate, structure undetermined, U.S. patent 2,644828, 1953. 
autoclave. 

Do not 

3Glucose addition is optional. Do not autoclave. 

shaking surface, and it also allowed air and light to contact the bacteria. Two layers of aluminum 

foil were used to cap the flasks during autoclaving. The aluminum foil cover was loosened after 

inoculation to ensure that air could enter. Cyanobacteria were grown under constant fluorescent 

lighting on a shaking surface rotating at 125 rpm. 

Media Comparisons 

Wild type Synechorystis PCC 6803 were grown in four different media conditions with or 

without glucose (G+ or G-), and with sufficient or deficient amounts of nitrogen (N + or N-) to 

investigate the relationship between glycogen production and the amount of glucose and 

nitrogen (in the form of sodium nitrate) in the growth media. A 50 mL glucose-containing, 

nitrogen-rich (G+ N+) pre-culture was inoculated with cells from a solid media plate and 

incubated for seven days. Five-milliliter aliquots of stock culture were transferred to four one-
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liter flasks of G+ N + media and incubated for seven days. The cells were collected by 

centrifugation (Sorvall RC-SC, Kendro Laboratory Products, Newtown, CT, USA) at 11,800 g 

for 15 min, rinsed three times with sterile deionized water (using centrifugation to collect cells 

after each rinse), and transferred to new media. The cells from each liter of G+ N+ media were 

transferred to one liter of new media, G+ N +, G+ N-, G- N +, or G- N-, and incubated in these 

different media for three days, then collected by centrifugation and stored at -18°C until analysis. 

Growth Curves 

Cyanobacteria Synechorystis PCC 6803 growth curves were measured for all four types of 

media. A stock culture was prepared by inoculating a 50 mL aliquot of G+ N + media with 

several colonies of cells grown on solid media. The stock culture was grown for five days. Two 

hundred and fifty milliliters of new media (all four types) was inoculated with 0.5 mL of this 

stock culture and grown for 11 days. The optical density of the inoculated media was monitored 

daily by measuring the absorbance at 730 nm (Beckman DU 520, Fullerton, CA). Water was 

used as a blank. 

Cell Breakage 

Cyanobacteria Synechorystis PCC 6803 cells were broken by grinding under liquid nitrogen. 

Cells were collected by centrifugation (11,800 g, 15 min) and stored at -18°C over night to freeze 

the pellet and reduce the loss of cells during removal from the centrifuge tube. The pellet was 

ground under liquid nitrogen for 15 min or until the cells were a fine powder. Ten milliliters of 

water was added to the broken cells and the suspension was centrifuged (11,800 g, 30 min) to 

separate the water-insoluble cellular waste from the water-soluble cellular material. The 

supernatant was boiled for 10 min to inactivate enzymes (Bartley and Dean 1968), and the 

cooled supernatant was divided into two 5 mL aliquots so that glycogen could be harvested by 
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trichloroacetic acid treatment followed by ethanol precipitation or by ethanol precipitation alone. 

Glycogen Extraction 

Glycogen was extracted from broken bacterial cells following a method similar to the 

method reported by Weber and Wober (1975) using trichloroacetic acid (fCA) to precipitate 

proteins followed by ethanol precipitation of glycogen, or by ethanol precipitation only. 

Ethanol-only glycogen extraction was used to prevent any acid degradation of the glycogen that 

may have occurred during TCA treatment (Orrell and Bueding 1964). Five volumes of 100% 

ethanol was added to boiled and cooled supernatant from the broken cells. This solution was 

stored at 4°C over night and the blue precipitate was collected by centrifugation (9,000 g, 20 

min) and air-dried at room temperature. Trichloroacetic acid treatment was performed 

following Weber and Wober's example. The boiled supernatant collected after centrifugation of 

broken cells was cooled and cold 20% TCA was added to a final concentration of 5%. 

Precipitated proteins were collected by centrifugation (9,000 g, 20 min). Five volumes of 100% 

ethanol was added to the remaining supernatant and this solution was stored at 4°C over night, 

during which time a fluffy white precipitate formed. The TCA-soluble glycogen precipitate was 

collected by centrifugation (9,000 g, 20 min) and allowed to air-dry at room temperature. The 

TCA-insoluble fraction that precipitated upon TCA addition was treated with 5 mL of 0.1 M 

sodium hydroxide and mixed until all of the precipitate dissolved (Fujimori et al 1995). Five 

volumes of 100% ethanol was added and the solution was stored at 4°C over night. The blue 

precipitate was collected by centrifugation (9,000 g, 20 min) and dried at room temperature. 

Glycogen Content Determination 

The precipitate that was collected and dried after ethanol-only treatment was dissolved in 

1.0 mL of deionized water. The TCA-insoluble fraction, which precipitated after ethanol 
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addition, was dissolved in 1.0 mL of deionized water. The dried TCA-soluble glycogen pellet 

was dissolved in 0.5 mL of deionized water. The glycogen content of these three solutions was 

analyzed chemically and enzymatically. Total carbohydrate analysis by the phenol-sulfuric acid 

method was used to determine the amount of carbohydrate present (Dubois et al 1956). The 

amount of glycogen present was determined by an amyloglucosidase enzymatic method. One-

hundred microliters sample, 100 µL of 0.1 M acetic acid buffer, pH 4.5, and 5 µL of 

amyloglucosidase solution (133 units/mL) were combined and incubated for 2 hours in a 55°C 

shaking water bath, 150 rpm. A Sigma Glucose Analysis Kit was used to determine the amount 

of glucose released from the enzymatic degradation of glycogen. 

Protein Content Determination 

Protein content of the precipitated glycogen was determined by combining 50 µL of 

sample with 2.50 mL of Bradford reagent (Bradford 1976). Colorimetric measurements were 

taken at 595 nm (Beckman DU 520, Fullerton, CA). 

Branch Chain Length Distribution Determination 

Cyanobacterial glycogen was debranched with isoamylase following previously published 

methods, with slight modifications Gane and Chen 1992). A small scale debranching procedure 

was followed for the cyanobacterial glycogen because of the limited amount of glycogen sample 

available. The total volume of the isoamylase solution was 200 µL and the pH was adjusted to 

6-7 with 0.1 N sodium hydroxide added in 3.0 µL aliquots. The pH was monitored by using the 

tip of a 20 µL capillary-action pipette to take a small sample, which was expelled onto a piece of 

pH paper for pH measurement. After neutralization and boiling, the samples were filtered 

through microcentrifuge tube cellulose acetate filters (Coming Inc., Coming, NY). Branch chain 

length distributions were analyzed by using a high-performance anion exchange chromatography 
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system equipped with an enzyme column reactor and a pulsed amperometric detector (Dionex, 

Sunnyvale, CA) (HPAEC-ENZ-PAD) by the method reported by Wong and Jane (1997). 

Results and Discussion 

Growth curves of Synechorystis PCC 6803 grown in the four types of media types used in 

this study are shown in Figure 1. This figure demonstrates that G+ N + media produced the 

greatest absorbance at 730 nm in the stationary phase and G- N- produced the least. The 

stationary phase of Synechorystis PCC 6803 in G+ N + media had an absorbance at 730 nm of 

approximately 1.7, which was more than twice that of the other three types of media. While the 

absorbance measurement did not directly quantify the cellular concentrations, it did indicate that 

the glucose-containing, nitrogen-rich media promoted the most abundant cellular growth. 

Four one-liter flasks of G+ N + media were inoculated with Synechorystis PCC 6803 and 

allowed to grow for seven days. The cells were isolated and transferred to four different types of 

media as described previously. The average growth curve for the four flasks of G+ N + before 

transfer is shown in Figure 2 and the individual growth curves after transfer are shown in Figure 

3. The growth curves in Figure 3 demonstrate that the glucose-containing media produced 

increased absorbance at 730 nm immediately after transfer, followed by a slight decrease. On 

the contrary, glucose-deficient growth conditions demonstrated a slight decrease in absorbance 

directly after transfer followed by a slight increase. 

The cells were collected, broken, and treated with trichloroacetic acid (f CA) or ethanol 

only to produce three fractions: TCA-soluble, TCA-insoluble, or ethanol-precipitated as 

described above. The carbohydrate (glycogen and any other water-soluble carbohydrates) 
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extracted from one liter of media was quantified by the phenol-sulfuric acid method and the 

results are shown in Table 6. The glucose-rich, nitrogen-deficient (G+ N-) media produced the 

most carbohydrate, followed by G+ N +, G- N +, and G- N-. The amount of carbohydrate 

present in the TCA-soluble fraction was much larger than that present in the TCA-insoluble 

fraction for both of the glucose-containing media. However, there was more carbohydrate in 

the TCA-insoluble fraction than the TCA-soluble fraction for both of the glucose-deficient 

conditions. 

Enzymatic determination of glycogen accumulated under each media growth condition 

was performed and the results of this analysis are listed in Table 7. The most glycogen was 

accumulated under the G+ N- media condition, followed by the G+ N+, G- N+, and G- N-

media conditions. In comparison to Table 6, the amount of glycogen in each fraction 

determined enzymatically was generally smaller than the amount of carbohydrate determined 

chemically. The enzymatic quantification of glycogen in the TCA-soluble fraction from the G+ 

N- media condition was smaller than would be expected, which may have been caused by 

incomplete enzyme hydrolysis of the glucose in this fraction. However, the enzymatic method 

of glycogen determination was considerably variable. The sums of glycogen in the TCA 

fractions were 92.5, 42.4, 72.3, and 65.8% of the glycogen in the ethanol only fraction for G+ 

N+, G+ N-, G- N+, G- N- media conditions, respectively. Total carbohydrate quantification 

by the phenol-sulfuric acid method was also variable, and sums of carbohydrate in the TCA 

fractions were 80.2, 90.2, 67.6, and 105.5% of the carbohydrate in the ethanol only fraction for 

G+ N+, G+ N-, G- N+, G- N- media conditions, respectively. 

The protein content of glycogen extracted from cyanobacteria grown under each media 

condition was determined using Bradford reagent and the outcomes of this study are shown in 
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Table 6. Total carbohydrate determination of glycogen yield from Synechorystis PCC 6803 grown under 
various media conditions 

Extraction Method G + N + (mg/L) G + N - (mg/L) G - N + (mg/L) G - N - (mg/L) 

Ethanol 18.07 29.98 2.10 1.09 

TCA-Soluble 12.40 20.04 0.24 0.20 

TCA-lnsoluble 2.10 6.99 1.18 0.95 

Table 7. Enzymatic determination of glycogen yield from Synechorystis PCC 6803 grown under various media 
conditions 

Extraction Method G + N + (mg/L) G + N - (mg/L) G - N + (mg/L) G - N - (mg/L) 

Ethanol 16.22 23.52 1.12 1.17 

TCA-Soluble 11.76 11.92 0.29 0.07 

TCA-Insoluble 3.24 1. 94 0.52 0. 70 

"° 0 
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Table 8. These results indicate that trichloroacetic acid was a successful method of removing 

proteins from glycogen. The amount of protein in the ethanol-only treated samples was 

comparable to the amount of protein in the TCA-insoluble fraction of the TCA-treated samples. 

There was no detectable protein in the TCA-soluble fraction. 

Branch chain length distributions of Synechorystis PCC 6803 glycogen extracted by ethanol 

only treatment and TCA treatment were prepared by isoamylase treatment. The TCA-soluble 

glycogen was analyzed for all four media conditions, but the ethanol only treated glycogen was 

analyzed for only three media conditions, as insufficient glycogen was extracted from the G- N + 

media. Figure 4 shows the branch chain length distributions ofTCA-treated glycogen. There 

were distinct differences in the branch chain length distributions of glycogen extracted from 

bacteria grown in the various media. For example, glycogen from bacteria grown in G+ N-

media had the longest long branches with degree of polymerization (DP) 48 while glycogen from 

bacteria grown in G- N + media had the shortest long branches (DP 26). Both of the media that 

contained glucose produced glycogen with longer branch chains than did the glucose-deficient 

media, but the average branch chain length was larger for nitrogen-deficient media than for 

nitrogen-abundant conditions. The longest branch chain lengths, peak (most abundant), and 

average chain lengths for debranched TCA-treated glycogen samples are given in Table 9. 

Figure 5 shows the branch chain length distributions of ethanol only-treated glycogen 

extracted from Synechorystis PCC 6803 grown under various media conditions. As with the 

TCA-treated glycogen samples, branch chain length distributions are distinctly different for 

glycogen extracted from bacteria grown under different media conditions. The glucose-rich 

media conditions resulted in the production of glycogen with longer branch chain lengths than 

1 • ...:i i. 1 d c-. . . a· 'Ti, 1 , . . , , , , h · l h D 46 i: mu tuc grncose- e11c1ent me ia. 1 ne 10ngest aetectao1e orancn c__a1n engt was P 1or 
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Table 8. Protein content of glycogen from Synechorystis PCC 6803 grown under various media conditions 

Extraction Method G + N + (mg/L) G + N - (mg/L) G - N + (mg/L) G - N - (mg/L) 

Ethanol 

TCA-Soluble 

TCA-lnsoluble 

2.08 

0.00 

2.86 

2.60 

0.00 

2.30 

2.38 

0.00 

2.12 

1.56 

0.00 

1.78 

I.O 
N 
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Figure 4. Branch chain length distributions ofTCA-extracted glycogen extracted from 
cyanobacteria Synechorystis PCC 6803 grown under various media conditions. 
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Figure 5. Branch chain length distributions of ethanol-precipitated glycogen extracted 
from cyanobacteria Synechoqstis PCC 6803 grown under various media conditions. 
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Table 9. Branch chain length distributions for debranched TCA-treated glycogen 
extracted from Synechorystis PCC 6803 grown in various media conditions 

Media Condition Peak Branch Longest Branch Average Chain 
Length {DP} Length {DP} Length {DP} 

G+N+ 2 43 9.53 

G+N- 2 48 11.24 

G-N+ 6 26 9.95 

G-N- 2 35 10.71 

glycogen from bacteria grown in G+ N+ media and DP 43 for glycogen extracted from bacteria 

grown in G+ N- media. Average branch chain lengths were larger for both glucose-rich media 

conditions than for the G-N- media condition. In the TCA-treated samples, it appeared as 

though average branch chain length was related to nitrogen deficiency rather than glucose 

content, but with ethanol-only treated samples, it appeared as though average branch chain 

length was related to glucose content. The peak, longest, and average chain lengths for glycogen 

extracted by ethanol only treatment are listed in Table 10. Note that data in the table do not 

always appear to match the figures because the instrument was able to detect very small amounts 

of long chains, and these small amounts may not be shown on the histograms. 

Table 10. Branch chain length distributions for debranched ethanol only-treated 
glycogen extracted from Synechorystis PCC 6803 grown in various media conditions 

Media Condition Peak Branch Longest Branch Average Chain 
Length (DP} Length (DP) Length {DP} 

G+N+ 2 46 10.41 

G+N- 6 43 12.67 

G-N- 2 24 7.13 
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The branch chain length distribution profiles of cyanobacterial glycogen demonstrated 

that the structure of glycogen produced by Synechorystis PCC 6803 was altered by the media in 

which the bacteria were grown. Glucose-containing media resulted in the production of 

glycogen with longer branch chain lengths than did glucose-deficient media. This finding that 

was consistent for both TCA and ethanol-only treatment during glycogen extraction and 

purification. 

Conclusions 

Cyanobacterial growth and glycogen accumulation were greatly affected by the nutrient 

content of the media in which the bacteria were grown. Growth curves from Synechorystis PCC 

6803 in various media demonstrated that these bacteria grew the fastest and caused the highest 

absorbance at 730 nm when grown in glucose and nitrogen-rich media, followed by glucose-rich, 

nitrogen-deficient media. 

Studies of glycogen accumulation under different growth conditions demonstrated that 

the amount of glucose and nitrogen in the media influenced the amount of glycogen produced. 

The largest amount of glycogen was accumulated in glucose-rich, nitrogen-deficient media. Not 

only was the amount of glycogen influenced by the nutrient composition of the media in which 

the bacteria were grown, the branch structure of the glycogen also changed with the media 

composition. Glucose-rich media resulted in glycogen with longer branch chain lengths than 

glucose-deficient media, but for TCA-treated samples, glycogen from bacteria grown under 

nitrogen-deficient conditions had longer average chain lengths. The extraction and purification 

procedure appeared to influence the average branch chain length distribution of glycogen and 

the amount of protein present in the glycogen. Trichloroacetic acid treatment proved to be an 
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effective way to remove proteins from glycogen, producing more pure glycogen samples without 

major damage to the glycogen molecular structure. 
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GENERAL CONCLUSIONS 

Isolated maize and Chalco teosinte starches were virtually indistinguishable in some 

aspects. For example, Chalco teosinte and maize starches demonstrated similar X-ray diffraction 

patterns, degrees of crystallinity, amylopectin molecular weights, and amylase contents. 

However, the starches were obviously different in granular form, determined by scanning 

electron microscopy, and Chalco teosinte starch had shorter branch chains, lower gelatinization 

temperature, higher retrogradation rate, and lower peak viscosity followed by greater shear-

thinning than maize starches. However, Chalco teosinte starch was more similar to maize starch 

than to other cereal starches. Uses of starch in commercial food applications often require low 

retrogradation (staling) rates and high peak viscosities. Maize starch demonstrates these qualities 

more than Chalco teosinte starch, potentially making it a more valuable starch, and the BSSS-

maize-Chalco teosinte cross properties were generally similar to those of BSSS maize. If, in fact, 

maize descended from teosinte as Dr. George Beadle proposed, then natural selection followed 

by careful breeding has produced a plant with more desirable starch. 

The semi-crystalline structure of starch granules accounts for many of the unique 

properties found in starch. Crystallinity and melting properties of starch were studied with the 

use of a starch model system and demonstrated that mixtures of amorphous and crystalline 

starch materials behaved in predictable ways. The degree of crystallinity increased linearly with 

Naegeli dextrin (83% crystallite) content when calculated as X-ray diffraction intensity at 12.5 

Two-Theta or as a ratio of the peak area to total area. However, moisture content and drying 

caused difficulties in X-ray diffraction analysis. Differential scanning calorimetry analyses 

showed second order increases in enthalpy change of gelatinization and peak gelatinization 
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temperature with linear increases in Naegeli dextrin content. The second order relationships 

indicate the possibility of an interaction between the crystalline and amorphous components of 

the mixtures. A more controlled experimental set-up could eliminate the drying effect observed 

in the X-ray patterns, and thus give more accurate results. Also, studies using whole starch 

granules would further confirm the correlation between degree of crystallinity, melting 

temperature, and melting enthalpy in starches. 

Glycogen, a non-crystalline, cold water soluble amylopectin-like glucose storage 

molecule produced by cyanobacteria Synechorystis PCC 6803 was produced most abundantly in 

glucose-rich, nitrogen-deficient media. However, the bacteria grew the fastest in glucose-rich, 

nitrogen-rich media. Glycogen branch chain length distributions changed with the media 

composition, and glucose-rich media (nitrogen-rich or deficient) resulted in glycogen with longer 

branch chain lengths than glucose-deficient media conditions. The glycogen purification 

procedure using trichloroacidic acid did not appear to influence on the branch chain length 

distribution of glycogen, but it did reduce the amount of protein present in the glycogen. 

Therefore, media conditions are important in determining the amount and structure of glycogen 

produced by cyanobacteria, but extraction procedures did not have a noticeable affect on these 

glycogen properties. 
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